核生物物理学:转录动力学的空间协调?

IF 4.3 2区 生物学 Q1 CELL BIOLOGY
Tae Yeon Yoo , Bernardo Gouveia , Daniel Needleman
{"title":"核生物物理学:转录动力学的空间协调?","authors":"Tae Yeon Yoo ,&nbsp;Bernardo Gouveia ,&nbsp;Daniel Needleman","doi":"10.1016/j.ceb.2025.102561","DOIUrl":null,"url":null,"abstract":"<div><div>A great deal is known about biochemical aspects of transcription, but we still lack an understanding of how transcription is causally regulated in space and time. A major unanswered question is the extent to which transcription at different locations in the nucleus are independent from each other or, instead, are spatially coordinated. We propose two classes of models of coordination: 1) the shared environment model, in which neighboring loci exhibit coordinated transcriptional dynamics due to sharing the same local biochemical environment; 2) the mechanical crosstalk model, in which forces propagate from one actively transcribing locus to affect transcription of another. Determining the prevalence of the spatial coordination of transcription, and the underlying mechanisms when it occurs, is an exciting challenge in nuclear biophysics.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102561"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear biophysics: Spatial coordination of transcriptional dynamics?\",\"authors\":\"Tae Yeon Yoo ,&nbsp;Bernardo Gouveia ,&nbsp;Daniel Needleman\",\"doi\":\"10.1016/j.ceb.2025.102561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A great deal is known about biochemical aspects of transcription, but we still lack an understanding of how transcription is causally regulated in space and time. A major unanswered question is the extent to which transcription at different locations in the nucleus are independent from each other or, instead, are spatially coordinated. We propose two classes of models of coordination: 1) the shared environment model, in which neighboring loci exhibit coordinated transcriptional dynamics due to sharing the same local biochemical environment; 2) the mechanical crosstalk model, in which forces propagate from one actively transcribing locus to affect transcription of another. Determining the prevalence of the spatial coordination of transcription, and the underlying mechanisms when it occurs, is an exciting challenge in nuclear biophysics.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"95 \",\"pages\":\"Article 102561\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425000997\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000997","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们对转录的生化方面了解很多,但我们仍然缺乏对转录如何在空间和时间上受到因果调节的理解。一个主要的悬而未决的问题是,在多大程度上转录在细胞核的不同位置是相互独立的,或者相反,是空间协调。我们提出了两类协调模型:1)共享环境模型,其中相邻基因座由于共享相同的局部生化环境而表现出协调的转录动力学;2)机械串扰模型,其中力从一个主动转录位点传播到另一个转录位点。确定转录空间协调的普遍性及其发生时的潜在机制,是核生物物理学中令人兴奋的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear biophysics: Spatial coordination of transcriptional dynamics?
A great deal is known about biochemical aspects of transcription, but we still lack an understanding of how transcription is causally regulated in space and time. A major unanswered question is the extent to which transcription at different locations in the nucleus are independent from each other or, instead, are spatially coordinated. We propose two classes of models of coordination: 1) the shared environment model, in which neighboring loci exhibit coordinated transcriptional dynamics due to sharing the same local biochemical environment; 2) the mechanical crosstalk model, in which forces propagate from one actively transcribing locus to affect transcription of another. Determining the prevalence of the spatial coordination of transcription, and the underlying mechanisms when it occurs, is an exciting challenge in nuclear biophysics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信