巨量红细胞增多症:分子机制和调控

IF 4.3 2区 生物学 Q1 CELL BIOLOGY
Hui Tu , Haibin Wang , Huaqing Cai
{"title":"巨量红细胞增多症:分子机制和调控","authors":"Hui Tu ,&nbsp;Haibin Wang ,&nbsp;Huaqing Cai","doi":"10.1016/j.ceb.2025.102563","DOIUrl":null,"url":null,"abstract":"<div><div>Macropinocytosis is a conserved pathway for non-selective bulk uptake of extracellular fluid. It plays important roles in various cellular processes, including nutrient acquisition in <em>Dictyostelium</em> and cancer cells and antigen sampling by immune cells. This process is initiated by localized actin polymerization, which drives the formation of membrane protrusions that close to generate macropinosomes. Once formed, macropinosomes undergo maturation and traffic through the endolysosomal system for cargo degradation, whereas non-degradable material is exocytosed. Recent studies have uncovered conserved regulatory networks controlling macropinosome formation and maturation. This review provides an overview of these pathways, highlighting key molecular regulators and their coordinated responses to environmental signals. We also examine the interplay between macropinocytosis and cell migration, discussing potential mechanisms that balance these processes to optimize cellular function.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102563"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macropinocytosis: Molecular mechanisms and regulation\",\"authors\":\"Hui Tu ,&nbsp;Haibin Wang ,&nbsp;Huaqing Cai\",\"doi\":\"10.1016/j.ceb.2025.102563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Macropinocytosis is a conserved pathway for non-selective bulk uptake of extracellular fluid. It plays important roles in various cellular processes, including nutrient acquisition in <em>Dictyostelium</em> and cancer cells and antigen sampling by immune cells. This process is initiated by localized actin polymerization, which drives the formation of membrane protrusions that close to generate macropinosomes. Once formed, macropinosomes undergo maturation and traffic through the endolysosomal system for cargo degradation, whereas non-degradable material is exocytosed. Recent studies have uncovered conserved regulatory networks controlling macropinosome formation and maturation. This review provides an overview of these pathways, highlighting key molecular regulators and their coordinated responses to environmental signals. We also examine the interplay between macropinocytosis and cell migration, discussing potential mechanisms that balance these processes to optimize cellular function.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"95 \",\"pages\":\"Article 102563\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425001012\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425001012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

巨量胞饮是一种非选择性大量摄取细胞外液的保守途径。它在各种细胞过程中发挥重要作用,包括盘基骨柱和癌细胞的营养获取以及免疫细胞的抗原取样。这个过程是由局部肌动蛋白聚合引发的,它驱动膜突起的形成,靠近产生巨肽体。一旦形成,大蛋白酶体通过内溶酶体系统进行成熟和运输以降解货物,而不可降解的物质则被胞吐。最近的研究发现了控制大肌醇体形成和成熟的保守调控网络。本文综述了这些途径,重点介绍了关键的分子调节因子及其对环境信号的协调反应。我们还研究了巨量红细胞增多症和细胞迁移之间的相互作用,讨论了平衡这些过程以优化细胞功能的潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Macropinocytosis: Molecular mechanisms and regulation
Macropinocytosis is a conserved pathway for non-selective bulk uptake of extracellular fluid. It plays important roles in various cellular processes, including nutrient acquisition in Dictyostelium and cancer cells and antigen sampling by immune cells. This process is initiated by localized actin polymerization, which drives the formation of membrane protrusions that close to generate macropinosomes. Once formed, macropinosomes undergo maturation and traffic through the endolysosomal system for cargo degradation, whereas non-degradable material is exocytosed. Recent studies have uncovered conserved regulatory networks controlling macropinosome formation and maturation. This review provides an overview of these pathways, highlighting key molecular regulators and their coordinated responses to environmental signals. We also examine the interplay between macropinocytosis and cell migration, discussing potential mechanisms that balance these processes to optimize cellular function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信