{"title":"Homological dimensions for endomorphism algebras of Gorenstein projective modules","authors":"Aiping Zhang, Xueping Lei","doi":"10.21136/cmj.2024.0199-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0199-23","url":null,"abstract":"<p>Let <i>A</i> be a CM-finite Artin algebra with a Gorenstein-Auslander generator <i>E, M</i> be a Gorenstein projective <i>A</i>-module and <i>B</i> = End<sub><i>A</i></sub><i>M</i>. We give an upper bound for the finitistic dimension of <i>B</i> in terms of homological data of <i>M</i>. Furthermore, if <i>A</i> is <i>n</i>-Gorenstein for 2 ⩽ <i>n</i> < ∞, then we show the global dimension of <i>B</i> is less than or equal to <i>n</i> plus the <i>B</i>-projective dimension of Hom<sub><i>A</i></sub>(<i>M, E</i>). As an application, the global dimension of End<sub><i>A</i></sub><i>E</i> is less than or equal to <i>n</i>.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-weight modules over the super Schrödinger algebra","authors":"Xinyue Wang, Liangyun Chen, Yao Ma","doi":"10.21136/cmj.2024.0030-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0030-23","url":null,"abstract":"<p>We construct a family of non-weight modules which are free <span>(U(frak{h}))</span>-modules of rank 2 over the <i>N</i> = 1 super Schrödinger algebra in (1+1)-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free <span>(U(frak{h}))</span>-modules of rank 2 over <span>(frak{osp}(1mid 2))</span> are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $$cal{SO}_5$$ and $$cal{SO}_6$$","authors":"Wei Gao","doi":"10.21136/cmj.2024.0221-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0221-24","url":null,"abstract":"<p>I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by <span>(cal{SO}_1, cal{SO}_2, dots, cal{SO}_6)</span>. Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants <span>(cal{SO}_5)</span> and <span>(cal{SO}_6)</span> among all trees and molecular trees of order <i>n</i>, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cotorsion pairs in comma categories","authors":"Yuan Yuan, Jian He, Dejun Wu","doi":"10.21136/cmj.2024.0420-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0420-23","url":null,"abstract":"<p>Let <span>(cal{A})</span> and <span>(cal{B})</span> be abelian categories with enough projective and injective objects, and <span>(T coloncal{A}rightarrowcal{B})</span> a left exact additive functor. Then one has a comma category (<span>(mathopen{cal{B} downarrow T})</span>). It is shown that if <span>(T coloncal{A}rightarrowcal{B})</span> is <span>(cal{X})</span>-exact, then is a (hereditary) cotorsion pair in <span>(cal{A})</span> and <img alt=\"\" src=\"//media.springernature.com/lw66/springer-static/image/art%3A10.21136%2FCMJ.2024.0420-23/MediaObjects/10587_2024_2023_Fig2_HTML.gif\" style=\"width:66px;max-width:none;\"/> is a (hereditary) cotorsion pair in <span>(cal{B})</span> if and only if <img alt=\"\" src=\"//media.springernature.com/lw128/springer-static/image/art%3A10.21136%2FCMJ.2024.0420-23/MediaObjects/10587_2024_2023_Fig3_HTML.gif\" style=\"width:128px;max-width:none;\"/> is a (hereditary) cotorsion pair in (<span>(mathopen{cal{B}downarrow T})</span>) and <span>(cal{X})</span> and <span>(cal{Y})</span> are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories <span>(cal{A})</span> and <span>(cal{B})</span> can induce special preenveloping classes in (<span>(mathopen{cal{B}downarrow T})</span>).</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regularizing effect of the interplay between coefficients in some noncoercive integral functionals","authors":"Aiping Zhang, Zesheng Feng, Hongya Gao","doi":"10.21136/cmj.2024.0216-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0216-24","url":null,"abstract":"<p>We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type</p><span>$$cal{J} (v)= int_Omega j(x,v,nabla v), {rm d}x +int_Omega a(x) vert vvert^{2} , {rm d} x -int_Omega fv , {rm d}x, quad vin W^{1,2}_{0}(Omega),$$</span><p>where Ω ⊂ ℝ<sup><i>N</i></sup>, <i>j</i> is a Carathéodory function such that <i>ξ</i> ↦ <i>j</i>(<i>x, s, ξ</i>) is convex, and there exist constants 0 ⩽ <i>τ</i> < 1 and <i>M</i> > 0 such that</p><span>$${vertxivert^{2}}{over{{(1+vert svert)^{tau}}}}leqslant j(x,s,xi)leqslant Mvertxivert^2$$</span><p>for almost all <i>x</i> ∈ Ω, all <i>s</i> ∈ ℝ and all <i>ξ</i> ∈ ℝ<sup><i>N</i></sup>. We show that, even if 0 < <i>a</i>(<i>x</i>) and <i>f</i>(<i>x</i>) only belong to <i>L</i><sup>1</sup>(Ω), the interplay</p><span>$$vert f(x)vertleqslant2 Qa(x)$$</span><p>implies the existence of a minimizer <i>u</i> ∈ <i>W</i><span>\u0000<sup>1,2</sup><sub>0</sub>\u0000</span> (Ω) which belongs to <i>L</i><sup>∞</sup>(Ω).</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On linear maps leaving invariant the copositive/completely positive cones","authors":"Sachindranath Jayaraman, Vatsalkumar N. Mer","doi":"10.21136/cmj.2024.0002-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0002-24","url":null,"abstract":"<p>The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices <span>(cal{S}^{n})</span> that leave invariant the closed convex cones of copositive and completely positive matrices (COP<sub><i>n</i></sub> and CP<sub><i>n</i></sub>). A description of an invertible linear map on <span>(cal{S}^{n})</span> such that <i>L</i>(CP<sub><i>n</i></sub>) ⊂ <i>CP</i><sub><i>n</i></sub> is obtained in terms of semipositive maps over the positive semidefinite cone <span>(cal{S}_{+}^{n})</span> and the cone of symmetric nonnegative matrices <span>(cal{N}_{+}^{n})</span> for <i>n</i> ⩽ 4, with specific calculations for <i>n</i> = 2. Preserver properties of the Lyapunov map <i>X</i> ↦ <i>AX</i> + <i>XA</i><sup><i>t</i></sup>, the generalized Lyapunov map <i>X</i> ↦ <i>AXB</i> + <i>B</i><sup><i>t</i></sup><i>XA</i><sup><i>t</i></sup>, and the structure of the dual of the cone <i>π</i>(CP<sub><i>n</i></sub>) (for <i>n</i> ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on <span>(cal{S}^{2})</span> that leaves invariant the closed convex cone <span>(cal{S}_{+}^{2})</span>.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A remark on a Diophantine equation of S. S. Pillai","authors":"Azizul Hoque","doi":"10.21136/cmj.2024.0124-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0124-24","url":null,"abstract":"","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-Fong Ke, Johannes H. Meyer, Günter F. Pilz, Gerhard Wendt
{"title":"On zero-symmetric nearrings with identity whose additive groups are simple","authors":"Wen-Fong Ke, Johannes H. Meyer, Günter F. Pilz, Gerhard Wendt","doi":"10.21136/cmj.2024.0086-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0086-24","url":null,"abstract":"","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}