{"title":"Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $$\\cal{SO}_5$$ and $$\\cal{SO}_6$$","authors":"Wei Gao","doi":"10.21136/cmj.2024.0221-24","DOIUrl":null,"url":null,"abstract":"<p>I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by <span>\\(\\cal{SO}_1, \\cal{SO}_2, \\dots, \\cal{SO}_6\\)</span>. Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants <span>\\(\\cal{SO}_5\\)</span> and <span>\\(\\cal{SO}_6\\)</span> among all trees and molecular trees of order <i>n</i>, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0221-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by \(\cal{SO}_1, \cal{SO}_2, \dots, \cal{SO}_6\). Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants \(\cal{SO}_5\) and \(\cal{SO}_6\) among all trees and molecular trees of order n, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.
I.Gutman (2022) 基于几何参数构建了六个新的图不变式,并将其命名为 Sombor-index-like graph invariants,用 \(\cal{SO}_1,\cal{SO}_2,\dots,\cal{SO}_6\)表示。Z. Tang, H. Deng (2022) 和 Z. Tang, Q. Li, H. Deng (2023) 研究了这些 Sombor-index-like graph invariants 的化学适用性和极值,并提出了一些开放问题,见 Z. Tang, Q. Li, H. Deng (2023)。我们考虑在 Z. Tang, Q. Li, H. Deng (2023) 结尾提出的第一个开放问题。我们得到了所有 n 阶树和分子树的图不变式 \(\cal{SO}_5\)和 \(\cal{SO}_6\)的极值,并分别描述了达到极值的树和分子树的特征。这样,问题就完全解决了。