与松博指数样图不变式 $$\cal{SO}_5$$ 和 $$\cal{SO}_6$$ 有关的极值树和分子树

Pub Date : 2024-08-27 DOI:10.21136/cmj.2024.0221-24
Wei Gao
{"title":"与松博指数样图不变式 $$\\cal{SO}_5$$ 和 $$\\cal{SO}_6$$ 有关的极值树和分子树","authors":"Wei Gao","doi":"10.21136/cmj.2024.0221-24","DOIUrl":null,"url":null,"abstract":"<p>I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by <span>\\(\\cal{SO}_1, \\cal{SO}_2, \\dots, \\cal{SO}_6\\)</span>. Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants <span>\\(\\cal{SO}_5\\)</span> and <span>\\(\\cal{SO}_6\\)</span> among all trees and molecular trees of order <i>n</i>, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $$\\\\cal{SO}_5$$ and $$\\\\cal{SO}_6$$\",\"authors\":\"Wei Gao\",\"doi\":\"10.21136/cmj.2024.0221-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by <span>\\\\(\\\\cal{SO}_1, \\\\cal{SO}_2, \\\\dots, \\\\cal{SO}_6\\\\)</span>. Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants <span>\\\\(\\\\cal{SO}_5\\\\)</span> and <span>\\\\(\\\\cal{SO}_6\\\\)</span> among all trees and molecular trees of order <i>n</i>, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0221-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0221-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

I.Gutman (2022) 基于几何参数构建了六个新的图不变式,并将其命名为 Sombor-index-like graph invariants,用 \(\cal{SO}_1,\cal{SO}_2,\dots,\cal{SO}_6\)表示。Z. Tang, H. Deng (2022) 和 Z. Tang, Q. Li, H. Deng (2023) 研究了这些 Sombor-index-like graph invariants 的化学适用性和极值,并提出了一些开放问题,见 Z. Tang, Q. Li, H. Deng (2023)。我们考虑在 Z. Tang, Q. Li, H. Deng (2023) 结尾提出的第一个开放问题。我们得到了所有 n 阶树和分子树的图不变式 \(\cal{SO}_5\)和 \(\cal{SO}_6\)的极值,并分别描述了达到极值的树和分子树的特征。这样,问题就完全解决了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extremal trees and molecular trees with respect to the Sombor-index-like graph invariants $$\cal{SO}_5$$ and $$\cal{SO}_6$$

I. Gutman (2022) constructed six new graph invariants based on geometric parameters, and named them Sombor-index-like graph invariants, denoted by \(\cal{SO}_1, \cal{SO}_2, \dots, \cal{SO}_6\). Z. Tang, H. Deng (2022) and Z. Tang, Q. Li, H. Deng (2023) investigated the chemical applicability and extremal values of these Sombor-index-like graph invariants, and raised some open problems, see Z. Tang, Q. Li, H. Deng (2023). We consider the first open problem formulated at the end of Z. Tang, Q. Li, H. Deng (2023). We obtain the extremal values of the graph invariants \(\cal{SO}_5\) and \(\cal{SO}_6\) among all trees and molecular trees of order n, and characterize the trees and molecular trees that achieve the extremal values, respectively. Thus, the problem is completely solved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信