The covariety of perfect numerical semigroups with fixed Frobenius number

Pub Date : 2024-07-15 DOI:10.21136/cmj.2024.0379-23
María Ángeles Moreno-Frías, José Carlos Rosales
{"title":"The covariety of perfect numerical semigroups with fixed Frobenius number","authors":"María Ángeles Moreno-Frías, José Carlos Rosales","doi":"10.21136/cmj.2024.0379-23","DOIUrl":null,"url":null,"abstract":"<p>Let <i>S</i> be a numerical semigroup. We say that <i>h</i> ∈ ℕ <i>S</i> is an isolated gap of <i>S</i> if {<i>h</i> − 1, <i>h</i> + 1} ⊆ <i>S</i>. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(<i>S</i>) the multiplicity of a numerical semigroup <i>S</i>. A covariety is a nonempty family <span>\\(\\mathscr{C}\\)</span> of numerical semigroups that fulfills the following conditions: there exists the minimum of <span>\\(\\mathscr{C}\\)</span>, the intersection of two elements of <span>\\(\\mathscr{C}\\)</span> is again an element of <span>\\(\\mathscr{C}\\)</span>, and <span>\\(S\\backslash\\{{\\rm m}(S)\\}\\in\\mathscr{C}\\)</span> for all <span>\\(S\\in\\mathscr{C}\\)</span> such that <span>\\(S\\neq\\min(\\mathscr{C})\\)</span>. We prove that the set <span>\\({\\mathscr{P}}(F)=\\{S\\colon\\ S\\ \\text{is}\\ \\text{a}\\ \\text{perfect}\\ \\text{numerical}\\ \\text{semigroup}\\ \\text{with}\\ \\text{Frobenius}\\ \\text{number}\\ F\\}\\)</span> is a covariety. Also, we describe three algorithms which compute: the set <span>\\({\\mathscr{P}}(F)\\)</span>, the maximal elements of <span>\\({\\mathscr{P}}(F)\\)</span>, and the elements of <span>\\({\\mathscr{P}}(F)\\)</span> with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(<i>F</i>) = {<i>S</i>: <i>S</i> is a Parf-numerical semigroup with Frobenius number <i>F</i>} and Psat(<i>F</i>) = {<i>S</i>: <i>S</i> is a Psat-numerical semigroup with Frobenius number <i>F</i>} are covarieties. As a consequence we present some algorithms to compute Parf(<i>F</i>) and Psat(<i>F</i>).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0379-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a numerical semigroup. We say that h ∈ ℕ S is an isolated gap of S if {h − 1, h + 1} ⊆ S. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(S) the multiplicity of a numerical semigroup S. A covariety is a nonempty family \(\mathscr{C}\) of numerical semigroups that fulfills the following conditions: there exists the minimum of \(\mathscr{C}\), the intersection of two elements of \(\mathscr{C}\) is again an element of \(\mathscr{C}\), and \(S\backslash\{{\rm m}(S)\}\in\mathscr{C}\) for all \(S\in\mathscr{C}\) such that \(S\neq\min(\mathscr{C})\). We prove that the set \({\mathscr{P}}(F)=\{S\colon\ S\ \text{is}\ \text{a}\ \text{perfect}\ \text{numerical}\ \text{semigroup}\ \text{with}\ \text{Frobenius}\ \text{number}\ F\}\) is a covariety. Also, we describe three algorithms which compute: the set \({\mathscr{P}}(F)\), the maximal elements of \({\mathscr{P}}(F)\), and the elements of \({\mathscr{P}}(F)\) with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(F) = {S: S is a Parf-numerical semigroup with Frobenius number F} and Psat(F) = {S: S is a Psat-numerical semigroup with Frobenius number F} are covarieties. As a consequence we present some algorithms to compute Parf(F) and Psat(F).

分享
查看原文
具有固定弗罗本尼斯数的完备数值半群的协方差
设 S 是一个数值半群。如果 {h - 1, h + 1} ⊆ S 是 S 的孤立间隙,我们就说 h∈ ℕ S 是 S 的孤立间隙。用 m(S) 表示数字半群 S 的多重性。共变是满足以下条件的数值半群的非空族 \(\mathscr{C}\):存在 \(\mathscr{C}\) 的最小值, \(\mathscr{C}\) 两个元素的交集又是\(\mathscr{C}\) 的元素、并且对于所有的(Sinmathscr{C})来说,\(S\backslash\{rm m}(S)\}inmathscr{C}\)使得\(S\neq\min(\mathscr{C})\)。我们证明集合 ({mathscr{P}}(F)=\{Scolon\ S\text{is\\text{a}\text{perfect}\text{numerical}\text{semigroup}\text{with}\text{Frobenius}\\text{number}\ F\}\ )是一个协变。此外,我们还描述了三种算法,它们可以计算:集合 \({\mathscr{P}}(F)\)、 \({\mathscr{P}}(F)\)的最大元素以及 \({\mathscr{P}}(F)\)中具有给定属的元素。一个 Parf 半群(或 Psat 半群)是一个完备的数值半群,它还分别是一个 Arf 数值半群(或饱和数值半群)。我们证明,集合 Parf(F) = {S: S 是一个具有弗罗贝尼斯数 F 的 Parf 数字半群} 和 Psat(F) = {S: S 是一个具有弗罗贝尼斯数 F 的 Psat 数字半群} 是协变量。因此,我们提出了一些计算 Parf(F) 和 Psat(F) 的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信