逗号类别中的同位语对

Pub Date : 2024-08-23 DOI:10.21136/cmj.2024.0420-23
Yuan Yuan, Jian He, Dejun Wu
{"title":"逗号类别中的同位语对","authors":"Yuan Yuan, Jian He, Dejun Wu","doi":"10.21136/cmj.2024.0420-23","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\cal{A}\\)</span> and <span>\\(\\cal{B}\\)</span> be abelian categories with enough projective and injective objects, and <span>\\(T \\colon\\cal{A}\\rightarrow\\cal{B}\\)</span> a left exact additive functor. Then one has a comma category (<span>\\(\\mathopen{\\cal{B} \\downarrow T}\\)</span>). It is shown that if <span>\\(T \\colon\\cal{A}\\rightarrow\\cal{B}\\)</span> is <span>\\(\\cal{X}\\)</span>-exact, then is a (hereditary) cotorsion pair in <span>\\(\\cal{A}\\)</span> and <img alt=\"\" src=\"//media.springernature.com/lw66/springer-static/image/art%3A10.21136%2FCMJ.2024.0420-23/MediaObjects/10587_2024_2023_Fig2_HTML.gif\" style=\"width:66px;max-width:none;\"/> is a (hereditary) cotorsion pair in <span>\\(\\cal{B}\\)</span> if and only if <img alt=\"\" src=\"//media.springernature.com/lw128/springer-static/image/art%3A10.21136%2FCMJ.2024.0420-23/MediaObjects/10587_2024_2023_Fig3_HTML.gif\" style=\"width:128px;max-width:none;\"/> is a (hereditary) cotorsion pair in (<span>\\(\\mathopen{\\cal{B}\\downarrow T}\\)</span>) and <span>\\(\\cal{X}\\)</span> and <span>\\(\\cal{Y}\\)</span> are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories <span>\\(\\cal{A}\\)</span> and <span>\\(\\cal{B}\\)</span> can induce special preenveloping classes in (<span>\\(\\mathopen{\\cal{B}\\downarrow T}\\)</span>).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cotorsion pairs in comma categories\",\"authors\":\"Yuan Yuan, Jian He, Dejun Wu\",\"doi\":\"10.21136/cmj.2024.0420-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\cal{A}\\\\)</span> and <span>\\\\(\\\\cal{B}\\\\)</span> be abelian categories with enough projective and injective objects, and <span>\\\\(T \\\\colon\\\\cal{A}\\\\rightarrow\\\\cal{B}\\\\)</span> a left exact additive functor. Then one has a comma category (<span>\\\\(\\\\mathopen{\\\\cal{B} \\\\downarrow T}\\\\)</span>). It is shown that if <span>\\\\(T \\\\colon\\\\cal{A}\\\\rightarrow\\\\cal{B}\\\\)</span> is <span>\\\\(\\\\cal{X}\\\\)</span>-exact, then is a (hereditary) cotorsion pair in <span>\\\\(\\\\cal{A}\\\\)</span> and <img alt=\\\"\\\" src=\\\"//media.springernature.com/lw66/springer-static/image/art%3A10.21136%2FCMJ.2024.0420-23/MediaObjects/10587_2024_2023_Fig2_HTML.gif\\\" style=\\\"width:66px;max-width:none;\\\"/> is a (hereditary) cotorsion pair in <span>\\\\(\\\\cal{B}\\\\)</span> if and only if <img alt=\\\"\\\" src=\\\"//media.springernature.com/lw128/springer-static/image/art%3A10.21136%2FCMJ.2024.0420-23/MediaObjects/10587_2024_2023_Fig3_HTML.gif\\\" style=\\\"width:128px;max-width:none;\\\"/> is a (hereditary) cotorsion pair in (<span>\\\\(\\\\mathopen{\\\\cal{B}\\\\downarrow T}\\\\)</span>) and <span>\\\\(\\\\cal{X}\\\\)</span> and <span>\\\\(\\\\cal{Y}\\\\)</span> are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories <span>\\\\(\\\\cal{A}\\\\)</span> and <span>\\\\(\\\\cal{B}\\\\)</span> can induce special preenveloping classes in (<span>\\\\(\\\\mathopen{\\\\cal{B}\\\\downarrow T}\\\\)</span>).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0420-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0420-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让(\cal{A}\)和(\cal{B}\)是有足够的投影和注入对象的阿贝尔范畴,并且(\(T \colon\cal{A}\rightarrow\cal{B}\) 是一个左完全相加的函子。那么就有一个逗号范畴(((mathopen{cal{B} \downarrow T}))。可以证明,如果(T)是(cal{X})-精确的、是(\(\mathopen\cal{B}downarrow T}\) 中的(遗传)同卷对,并且(\(\cal{X}\)和(\cal{Y}\)在扩展下是封闭的)是(遗传)同卷对。此外,我们还描述了当无边际范畴(\(\mathopen{cal{A}\)和(\(\cal{B}\)中的特殊前发类可以诱导(\(\mathopen{cal{B}\downarrow T}\)中的特殊前发类时的特征。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cotorsion pairs in comma categories

分享
查看原文
Cotorsion pairs in comma categories

Let \(\cal{A}\) and \(\cal{B}\) be abelian categories with enough projective and injective objects, and \(T \colon\cal{A}\rightarrow\cal{B}\) a left exact additive functor. Then one has a comma category (\(\mathopen{\cal{B} \downarrow T}\)). It is shown that if \(T \colon\cal{A}\rightarrow\cal{B}\) is \(\cal{X}\)-exact, then is a (hereditary) cotorsion pair in \(\cal{A}\) and is a (hereditary) cotorsion pair in \(\cal{B}\) if and only if is a (hereditary) cotorsion pair in (\(\mathopen{\cal{B}\downarrow T}\)) and \(\cal{X}\) and \(\cal{Y}\) are closed under extensions. Furthermore, we characterize when special preenveloping classes in abelian categories \(\cal{A}\) and \(\cal{B}\) can induce special preenveloping classes in (\(\mathopen{\cal{B}\downarrow T}\)).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信