Homological dimensions for endomorphism algebras of Gorenstein projective modules

Pub Date : 2024-08-28 DOI:10.21136/cmj.2024.0199-23
Aiping Zhang, Xueping Lei
{"title":"Homological dimensions for endomorphism algebras of Gorenstein projective modules","authors":"Aiping Zhang, Xueping Lei","doi":"10.21136/cmj.2024.0199-23","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> be a CM-finite Artin algebra with a Gorenstein-Auslander generator <i>E, M</i> be a Gorenstein projective <i>A</i>-module and <i>B</i> = End<sub><i>A</i></sub><i>M</i>. We give an upper bound for the finitistic dimension of <i>B</i> in terms of homological data of <i>M</i>. Furthermore, if <i>A</i> is <i>n</i>-Gorenstein for 2 ⩽ <i>n</i> &lt; ∞, then we show the global dimension of <i>B</i> is less than or equal to <i>n</i> plus the <i>B</i>-projective dimension of Hom<sub><i>A</i></sub>(<i>M, E</i>). As an application, the global dimension of End<sub><i>A</i></sub><i>E</i> is less than or equal to <i>n</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0199-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a CM-finite Artin algebra with a Gorenstein-Auslander generator E, M be a Gorenstein projective A-module and B = EndAM. We give an upper bound for the finitistic dimension of B in terms of homological data of M. Furthermore, if A is n-Gorenstein for 2 ⩽ n < ∞, then we show the global dimension of B is less than or equal to n plus the B-projective dimension of HomA(M, E). As an application, the global dimension of EndAE is less than or equal to n.

分享
查看原文
戈伦斯坦投影模组内态代数的同调维数
设 A 是具有戈伦斯坦-奥斯兰德生成器 E 的 CM 有限阿尔丁代数,M 是戈伦斯坦投影 A 模块,B = EndAM。此外,如果 A 在 2 ⩽ n < ∞ 时是 n-Gorenstein 的,那么我们将证明 B 的全局维度小于或等于 n 加上 HomA(M, E) 的 B 投影维度。作为应用,EndAE 的全局维度小于或等于 n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信