科恩-麦考莱双方形图的◦运算和*运算

Pub Date : 2024-07-21 DOI:10.21136/cmj.2024.0438-23
Yulong Yang, Guangjun Zhu, Yijun Cui, Shiya Duan
{"title":"科恩-麦考莱双方形图的◦运算和*运算","authors":"Yulong Yang, Guangjun Zhu, Yijun Cui, Shiya Duan","doi":"10.21136/cmj.2024.0438-23","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite simple graph with the vertex set <i>V</i> and let <i>I</i><sub><i>G</i></sub> be its edge ideal in the polynomial ring <span>\\(S=\\mathbb{K}[V]\\)</span>. We compute the depth and the Castelnuovo-Mumford regularity of <i>S</i>/<i>I</i><sub><i>G</i></sub> when <i>G</i> = <i>G</i><sub>1</sub> ◦ <i>G</i><sub>2</sub> or <i>G</i> = <i>G</i><sub>1</sub> * <i>G</i><sub>2</sub> is a graph obtained from Cohen-Macaulay bipartite graphs <i>G</i><sub>1</sub>, <i>G</i><sub>2</sub> by the ◦ operation or * operation, respectively.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ◦ operation and * operation of Cohen-Macaulay bipartite graphs\",\"authors\":\"Yulong Yang, Guangjun Zhu, Yijun Cui, Shiya Duan\",\"doi\":\"10.21136/cmj.2024.0438-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a finite simple graph with the vertex set <i>V</i> and let <i>I</i><sub><i>G</i></sub> be its edge ideal in the polynomial ring <span>\\\\(S=\\\\mathbb{K}[V]\\\\)</span>. We compute the depth and the Castelnuovo-Mumford regularity of <i>S</i>/<i>I</i><sub><i>G</i></sub> when <i>G</i> = <i>G</i><sub>1</sub> ◦ <i>G</i><sub>2</sub> or <i>G</i> = <i>G</i><sub>1</sub> * <i>G</i><sub>2</sub> is a graph obtained from Cohen-Macaulay bipartite graphs <i>G</i><sub>1</sub>, <i>G</i><sub>2</sub> by the ◦ operation or * operation, respectively.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0438-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0438-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是顶点集为 V 的有限简单图,设 IG 是它在(S=\mathbb{K}[V]\)多项式环中的边理想。当 G = G1 ◦ G2 或 G = G1 * G2 分别是由科恩-马科莱双向图 G1、G2 通过 ◦ 操作或 * 操作得到的图时,我们计算 S/IG 的深度和卡斯特诺沃-蒙福德正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The ◦ operation and * operation of Cohen-Macaulay bipartite graphs

Let G be a finite simple graph with the vertex set V and let IG be its edge ideal in the polynomial ring \(S=\mathbb{K}[V]\). We compute the depth and the Castelnuovo-Mumford regularity of S/IG when G = G1G2 or G = G1 * G2 is a graph obtained from Cohen-Macaulay bipartite graphs G1, G2 by the ◦ operation or * operation, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信