关于使共正/完全正锥不变的线性映射

IF 0.4 4区 数学 Q4 MATHEMATICS
Sachindranath Jayaraman, Vatsalkumar N. Mer
{"title":"关于使共正/完全正锥不变的线性映射","authors":"Sachindranath Jayaraman, Vatsalkumar N. Mer","doi":"10.21136/cmj.2024.0002-24","DOIUrl":null,"url":null,"abstract":"<p>The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices <span>\\(\\cal{S}^{n}\\)</span> that leave invariant the closed convex cones of copositive and completely positive matrices (COP<sub><i>n</i></sub> and CP<sub><i>n</i></sub>). A description of an invertible linear map on <span>\\(\\cal{S}^{n}\\)</span> such that <i>L</i>(CP<sub><i>n</i></sub>) ⊂ <i>CP</i><sub><i>n</i></sub> is obtained in terms of semipositive maps over the positive semidefinite cone <span>\\(\\cal{S}_{+}^{n}\\)</span> and the cone of symmetric nonnegative matrices <span>\\(\\cal{N}_{+}^{n}\\)</span> for <i>n</i> ⩽ 4, with specific calculations for <i>n</i> = 2. Preserver properties of the Lyapunov map <i>X</i> ↦ <i>AX</i> + <i>XA</i><sup><i>t</i></sup>, the generalized Lyapunov map <i>X</i> ↦ <i>AXB</i> + <i>B</i><sup><i>t</i></sup><i>XA</i><sup><i>t</i></sup>, and the structure of the dual of the cone <i>π</i>(CP<sub><i>n</i></sub>) (for <i>n</i> ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on <span>\\(\\cal{S}^{2}\\)</span> that leaves invariant the closed convex cone <span>\\(\\cal{S}_{+}^{2}\\)</span>.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"10 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On linear maps leaving invariant the copositive/completely positive cones\",\"authors\":\"Sachindranath Jayaraman, Vatsalkumar N. Mer\",\"doi\":\"10.21136/cmj.2024.0002-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices <span>\\\\(\\\\cal{S}^{n}\\\\)</span> that leave invariant the closed convex cones of copositive and completely positive matrices (COP<sub><i>n</i></sub> and CP<sub><i>n</i></sub>). A description of an invertible linear map on <span>\\\\(\\\\cal{S}^{n}\\\\)</span> such that <i>L</i>(CP<sub><i>n</i></sub>) ⊂ <i>CP</i><sub><i>n</i></sub> is obtained in terms of semipositive maps over the positive semidefinite cone <span>\\\\(\\\\cal{S}_{+}^{n}\\\\)</span> and the cone of symmetric nonnegative matrices <span>\\\\(\\\\cal{N}_{+}^{n}\\\\)</span> for <i>n</i> ⩽ 4, with specific calculations for <i>n</i> = 2. Preserver properties of the Lyapunov map <i>X</i> ↦ <i>AX</i> + <i>XA</i><sup><i>t</i></sup>, the generalized Lyapunov map <i>X</i> ↦ <i>AXB</i> + <i>B</i><sup><i>t</i></sup><i>XA</i><sup><i>t</i></sup>, and the structure of the dual of the cone <i>π</i>(CP<sub><i>n</i></sub>) (for <i>n</i> ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on <span>\\\\(\\\\cal{S}^{2}\\\\)</span> that leaves invariant the closed convex cone <span>\\\\(\\\\cal{S}_{+}^{2}\\\\)</span>.</p>\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0002-24\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0002-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本手稿的目的是研究实对称矩阵空间上的线性映射的结构,这些线性映射使共正矩阵和完全正矩阵(COPn 和 CPn)的封闭凸锥保持不变。在 n ⩽ 4 时,通过正半定锥 \(\cal{S}_{+}^{n}\) 和对称非负矩阵锥 \(\cal{N}_{+}^{n}\)上的半正映射,得到了对\(\cal{S}^{n}\)上可逆线性映射的描述,使得 L(CPn) ⊂ CPn,并对 n = 2 进行了具体计算。我们还提出了李雅普诺夫映射 X ↦ AX + XAt、广义李雅普诺夫映射 X ↦ AXB + BtXAt 以及锥体 π(CPn)对偶结构(n ⩽ 4 时)的保护特性。我们还强调了一种确定 \(\cal{S}^{2}\) 上可逆线性映射结构的不同方法,它使得封闭凸锥 \(\cal{S}_{+}^{2}\) 不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On linear maps leaving invariant the copositive/completely positive cones

The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices \(\cal{S}^{n}\) that leave invariant the closed convex cones of copositive and completely positive matrices (COPn and CPn). A description of an invertible linear map on \(\cal{S}^{n}\) such that L(CPn) ⊂ CPn is obtained in terms of semipositive maps over the positive semidefinite cone \(\cal{S}_{+}^{n}\) and the cone of symmetric nonnegative matrices \(\cal{N}_{+}^{n}\) for n ⩽ 4, with specific calculations for n = 2. Preserver properties of the Lyapunov map XAX + XAt, the generalized Lyapunov map XAXB + BtXAt, and the structure of the dual of the cone π(CPn) (for n ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on \(\cal{S}^{2}\) that leaves invariant the closed convex cone \(\cal{S}_{+}^{2}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信