{"title":"关于使共正/完全正锥不变的线性映射","authors":"Sachindranath Jayaraman, Vatsalkumar N. Mer","doi":"10.21136/cmj.2024.0002-24","DOIUrl":null,"url":null,"abstract":"<p>The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices <span>\\(\\cal{S}^{n}\\)</span> that leave invariant the closed convex cones of copositive and completely positive matrices (COP<sub><i>n</i></sub> and CP<sub><i>n</i></sub>). A description of an invertible linear map on <span>\\(\\cal{S}^{n}\\)</span> such that <i>L</i>(CP<sub><i>n</i></sub>) ⊂ <i>CP</i><sub><i>n</i></sub> is obtained in terms of semipositive maps over the positive semidefinite cone <span>\\(\\cal{S}_{+}^{n}\\)</span> and the cone of symmetric nonnegative matrices <span>\\(\\cal{N}_{+}^{n}\\)</span> for <i>n</i> ⩽ 4, with specific calculations for <i>n</i> = 2. Preserver properties of the Lyapunov map <i>X</i> ↦ <i>AX</i> + <i>XA</i><sup><i>t</i></sup>, the generalized Lyapunov map <i>X</i> ↦ <i>AXB</i> + <i>B</i><sup><i>t</i></sup><i>XA</i><sup><i>t</i></sup>, and the structure of the dual of the cone <i>π</i>(CP<sub><i>n</i></sub>) (for <i>n</i> ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on <span>\\(\\cal{S}^{2}\\)</span> that leaves invariant the closed convex cone <span>\\(\\cal{S}_{+}^{2}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On linear maps leaving invariant the copositive/completely positive cones\",\"authors\":\"Sachindranath Jayaraman, Vatsalkumar N. Mer\",\"doi\":\"10.21136/cmj.2024.0002-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices <span>\\\\(\\\\cal{S}^{n}\\\\)</span> that leave invariant the closed convex cones of copositive and completely positive matrices (COP<sub><i>n</i></sub> and CP<sub><i>n</i></sub>). A description of an invertible linear map on <span>\\\\(\\\\cal{S}^{n}\\\\)</span> such that <i>L</i>(CP<sub><i>n</i></sub>) ⊂ <i>CP</i><sub><i>n</i></sub> is obtained in terms of semipositive maps over the positive semidefinite cone <span>\\\\(\\\\cal{S}_{+}^{n}\\\\)</span> and the cone of symmetric nonnegative matrices <span>\\\\(\\\\cal{N}_{+}^{n}\\\\)</span> for <i>n</i> ⩽ 4, with specific calculations for <i>n</i> = 2. Preserver properties of the Lyapunov map <i>X</i> ↦ <i>AX</i> + <i>XA</i><sup><i>t</i></sup>, the generalized Lyapunov map <i>X</i> ↦ <i>AXB</i> + <i>B</i><sup><i>t</i></sup><i>XA</i><sup><i>t</i></sup>, and the structure of the dual of the cone <i>π</i>(CP<sub><i>n</i></sub>) (for <i>n</i> ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on <span>\\\\(\\\\cal{S}^{2}\\\\)</span> that leaves invariant the closed convex cone <span>\\\\(\\\\cal{S}_{+}^{2}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0002-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0002-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本手稿的目的是研究实对称矩阵空间上的线性映射的结构,这些线性映射使共正矩阵和完全正矩阵(COPn 和 CPn)的封闭凸锥保持不变。在 n ⩽ 4 时,通过正半定锥 \(\cal{S}_{+}^{n}\) 和对称非负矩阵锥 \(\cal{N}_{+}^{n}\)上的半正映射,得到了对\(\cal{S}^{n}\)上可逆线性映射的描述,使得 L(CPn) ⊂ CPn,并对 n = 2 进行了具体计算。我们还提出了李雅普诺夫映射 X ↦ AX + XAt、广义李雅普诺夫映射 X ↦ AXB + BtXAt 以及锥体 π(CPn)对偶结构(n ⩽ 4 时)的保护特性。我们还强调了一种确定 \(\cal{S}^{2}\) 上可逆线性映射结构的不同方法,它使得封闭凸锥 \(\cal{S}_{+}^{2}\) 不变。
On linear maps leaving invariant the copositive/completely positive cones
The objective of this manuscript is to investigate the structure of linear maps on the space of real symmetric matrices \(\cal{S}^{n}\) that leave invariant the closed convex cones of copositive and completely positive matrices (COPn and CPn). A description of an invertible linear map on \(\cal{S}^{n}\) such that L(CPn) ⊂ CPn is obtained in terms of semipositive maps over the positive semidefinite cone \(\cal{S}_{+}^{n}\) and the cone of symmetric nonnegative matrices \(\cal{N}_{+}^{n}\) for n ⩽ 4, with specific calculations for n = 2. Preserver properties of the Lyapunov map X ↦ AX + XAt, the generalized Lyapunov map X ↦ AXB + BtXAt, and the structure of the dual of the cone π(CPn) (for n ⩽ 4) are brought out. We also highlight a different way to determine the structure of an invertible linear map on \(\cal{S}^{2}\) that leaves invariant the closed convex cone \(\cal{S}_{+}^{2}\).