某些非强制积分函数中系数间相互作用的正则效应

IF 0.4 4区 数学 Q4 MATHEMATICS
Aiping Zhang, Zesheng Feng, Hongya Gao
{"title":"某些非强制积分函数中系数间相互作用的正则效应","authors":"Aiping Zhang, Zesheng Feng, Hongya Gao","doi":"10.21136/cmj.2024.0216-24","DOIUrl":null,"url":null,"abstract":"<p>We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type</p><span>$$\\cal{J} (v)= \\int_\\Omega j(x,v,\\nabla v)\\, {\\rm d}x +\\int_\\Omega a(x) \\vert v\\vert^{2} \\, {\\rm d} x -\\int_\\Omega fv \\, {\\rm d}x, \\quad v\\in W^{1,2}_{0}(\\Omega),$$</span><p>where Ω ⊂ ℝ<sup><i>N</i></sup>, <i>j</i> is a Carathéodory function such that <i>ξ</i> ↦ <i>j</i>(<i>x, s, ξ</i>) is convex, and there exist constants 0 ⩽ <i>τ</i> &lt; 1 and <i>M</i> &gt; 0 such that</p><span>$${\\vert\\xi\\vert^{2}}{\\over{{(1+\\vert s\\vert)^{\\tau}}}}\\leqslant j(x,s,\\xi)\\leqslant M\\vert\\xi\\vert^2$$</span><p>for almost all <i>x</i> ∈ Ω, all <i>s</i> ∈ ℝ and all <i>ξ</i> ∈ ℝ<sup><i>N</i></sup>. We show that, even if 0 &lt; <i>a</i>(<i>x</i>) and <i>f</i>(<i>x</i>) only belong to <i>L</i><sup>1</sup>(Ω), the interplay</p><span>$$\\vert f(x)\\vert\\leqslant2 Qa(x)$$</span><p>implies the existence of a minimizer <i>u</i> ∈ <i>W</i><span>\n<sup>1,2</sup><sub>0</sub>\n</span> (Ω) which belongs to <i>L</i><sup>∞</sup>(Ω).</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"148 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularizing effect of the interplay between coefficients in some noncoercive integral functionals\",\"authors\":\"Aiping Zhang, Zesheng Feng, Hongya Gao\",\"doi\":\"10.21136/cmj.2024.0216-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type</p><span>$$\\\\cal{J} (v)= \\\\int_\\\\Omega j(x,v,\\\\nabla v)\\\\, {\\\\rm d}x +\\\\int_\\\\Omega a(x) \\\\vert v\\\\vert^{2} \\\\, {\\\\rm d} x -\\\\int_\\\\Omega fv \\\\, {\\\\rm d}x, \\\\quad v\\\\in W^{1,2}_{0}(\\\\Omega),$$</span><p>where Ω ⊂ ℝ<sup><i>N</i></sup>, <i>j</i> is a Carathéodory function such that <i>ξ</i> ↦ <i>j</i>(<i>x, s, ξ</i>) is convex, and there exist constants 0 ⩽ <i>τ</i> &lt; 1 and <i>M</i> &gt; 0 such that</p><span>$${\\\\vert\\\\xi\\\\vert^{2}}{\\\\over{{(1+\\\\vert s\\\\vert)^{\\\\tau}}}}\\\\leqslant j(x,s,\\\\xi)\\\\leqslant M\\\\vert\\\\xi\\\\vert^2$$</span><p>for almost all <i>x</i> ∈ Ω, all <i>s</i> ∈ ℝ and all <i>ξ</i> ∈ ℝ<sup><i>N</i></sup>. We show that, even if 0 &lt; <i>a</i>(<i>x</i>) and <i>f</i>(<i>x</i>) only belong to <i>L</i><sup>1</sup>(Ω), the interplay</p><span>$$\\\\vert f(x)\\\\vert\\\\leqslant2 Qa(x)$$</span><p>implies the existence of a minimizer <i>u</i> ∈ <i>W</i><span>\\n<sup>1,2</sup><sub>0</sub>\\n</span> (Ω) which belongs to <i>L</i><sup>∞</sup>(Ω).</p>\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"148 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0216-24\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0216-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们感兴趣的是零阶项的系数与一些非胁迫积分函数类型$$cal{J} (v)= \int_\Omega j(x,v,\nabla v)\, {\rm d}x +\int_\Omega a(x) \vert vvert\^{2} 中的基准点之间相互作用的正则效应\, {\rm d}x -\int_\Omega fv \, {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega),$$where Ω ⊂ ℝN, j is a Carathéodory function such that ξ ↦ j(x, s, ξ) is convex, and there exist constants 0 ⩽ τ <;1 and M > 0 such that$${vert\xi\vert^{2}}{over{{(1+\vert s\vert)^{\tau}}}}\leqslant j(x,s,\xi)\leqslant M\vert\xi\vert^2$$ for almost all x∈ Ω, all s∈ ℝ and all ξ∈ ℝN.我们证明,即使 0 < a(x) 和 f(x) 只属于 L1(Ω),相互影响$$\vert f(x)\vert\leqslant2 Qa(x)$$ 也意味着存在一个属于 L∞(Ω)的最小值 u∈ W1,20 (Ω) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularizing effect of the interplay between coefficients in some noncoercive integral functionals

We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type

$$\cal{J} (v)= \int_\Omega j(x,v,\nabla v)\, {\rm d}x +\int_\Omega a(x) \vert v\vert^{2} \, {\rm d} x -\int_\Omega fv \, {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega),$$

where Ω ⊂ ℝN, j is a Carathéodory function such that ξj(x, s, ξ) is convex, and there exist constants 0 ⩽ τ < 1 and M > 0 such that

$${\vert\xi\vert^{2}}{\over{{(1+\vert s\vert)^{\tau}}}}\leqslant j(x,s,\xi)\leqslant M\vert\xi\vert^2$$

for almost all x ∈ Ω, all s ∈ ℝ and all ξ ∈ ℝN. We show that, even if 0 < a(x) and f(x) only belong to L1(Ω), the interplay

$$\vert f(x)\vert\leqslant2 Qa(x)$$

implies the existence of a minimizer uW 1,20 (Ω) which belongs to L(Ω).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信