{"title":"某些非强制积分函数中系数间相互作用的正则效应","authors":"Aiping Zhang, Zesheng Feng, Hongya Gao","doi":"10.21136/cmj.2024.0216-24","DOIUrl":null,"url":null,"abstract":"<p>We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type</p><span>$$\\cal{J} (v)= \\int_\\Omega j(x,v,\\nabla v)\\, {\\rm d}x +\\int_\\Omega a(x) \\vert v\\vert^{2} \\, {\\rm d} x -\\int_\\Omega fv \\, {\\rm d}x, \\quad v\\in W^{1,2}_{0}(\\Omega),$$</span><p>where Ω ⊂ ℝ<sup><i>N</i></sup>, <i>j</i> is a Carathéodory function such that <i>ξ</i> ↦ <i>j</i>(<i>x, s, ξ</i>) is convex, and there exist constants 0 ⩽ <i>τ</i> < 1 and <i>M</i> > 0 such that</p><span>$${\\vert\\xi\\vert^{2}}{\\over{{(1+\\vert s\\vert)^{\\tau}}}}\\leqslant j(x,s,\\xi)\\leqslant M\\vert\\xi\\vert^2$$</span><p>for almost all <i>x</i> ∈ Ω, all <i>s</i> ∈ ℝ and all <i>ξ</i> ∈ ℝ<sup><i>N</i></sup>. We show that, even if 0 < <i>a</i>(<i>x</i>) and <i>f</i>(<i>x</i>) only belong to <i>L</i><sup>1</sup>(Ω), the interplay</p><span>$$\\vert f(x)\\vert\\leqslant2 Qa(x)$$</span><p>implies the existence of a minimizer <i>u</i> ∈ <i>W</i><span>\n<sup>1,2</sup><sub>0</sub>\n</span> (Ω) which belongs to <i>L</i><sup>∞</sup>(Ω).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularizing effect of the interplay between coefficients in some noncoercive integral functionals\",\"authors\":\"Aiping Zhang, Zesheng Feng, Hongya Gao\",\"doi\":\"10.21136/cmj.2024.0216-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type</p><span>$$\\\\cal{J} (v)= \\\\int_\\\\Omega j(x,v,\\\\nabla v)\\\\, {\\\\rm d}x +\\\\int_\\\\Omega a(x) \\\\vert v\\\\vert^{2} \\\\, {\\\\rm d} x -\\\\int_\\\\Omega fv \\\\, {\\\\rm d}x, \\\\quad v\\\\in W^{1,2}_{0}(\\\\Omega),$$</span><p>where Ω ⊂ ℝ<sup><i>N</i></sup>, <i>j</i> is a Carathéodory function such that <i>ξ</i> ↦ <i>j</i>(<i>x, s, ξ</i>) is convex, and there exist constants 0 ⩽ <i>τ</i> < 1 and <i>M</i> > 0 such that</p><span>$${\\\\vert\\\\xi\\\\vert^{2}}{\\\\over{{(1+\\\\vert s\\\\vert)^{\\\\tau}}}}\\\\leqslant j(x,s,\\\\xi)\\\\leqslant M\\\\vert\\\\xi\\\\vert^2$$</span><p>for almost all <i>x</i> ∈ Ω, all <i>s</i> ∈ ℝ and all <i>ξ</i> ∈ ℝ<sup><i>N</i></sup>. We show that, even if 0 < <i>a</i>(<i>x</i>) and <i>f</i>(<i>x</i>) only belong to <i>L</i><sup>1</sup>(Ω), the interplay</p><span>$$\\\\vert f(x)\\\\vert\\\\leqslant2 Qa(x)$$</span><p>implies the existence of a minimizer <i>u</i> ∈ <i>W</i><span>\\n<sup>1,2</sup><sub>0</sub>\\n</span> (Ω) which belongs to <i>L</i><sup>∞</sup>(Ω).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0216-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0216-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们感兴趣的是零阶项的系数与一些非胁迫积分函数类型$$cal{J} (v)= \int_\Omega j(x,v,\nabla v)\, {\rm d}x +\int_\Omega a(x) \vert vvert\^{2} 中的基准点之间相互作用的正则效应\, {\rm d}x -\int_\Omega fv \, {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega),$$where Ω ⊂ ℝN, j is a Carathéodory function such that ξ ↦ j(x, s, ξ) is convex, and there exist constants 0 ⩽ τ <;1 and M > 0 such that$${vert\xi\vert^{2}}{over{{(1+\vert s\vert)^{\tau}}}}\leqslant j(x,s,\xi)\leqslant M\vert\xi\vert^2$$ for almost all x∈ Ω, all s∈ ℝ and all ξ∈ ℝN.我们证明,即使 0 < a(x) 和 f(x) 只属于 L1(Ω),相互影响$$\vert f(x)\vert\leqslant2 Qa(x)$$ 也意味着存在一个属于 L∞(Ω)的最小值 u∈ W1,20 (Ω) 。
Regularizing effect of the interplay between coefficients in some noncoercive integral functionals
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type