{"title":"The ◦ operation and * operation of Cohen-Macaulay bipartite graphs","authors":"Yulong Yang, Guangjun Zhu, Yijun Cui, Shiya Duan","doi":"10.21136/cmj.2024.0438-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0438-23","url":null,"abstract":"<p>Let <i>G</i> be a finite simple graph with the vertex set <i>V</i> and let <i>I</i><sub><i>G</i></sub> be its edge ideal in the polynomial ring <span>(S=mathbb{K}[V])</span>. We compute the depth and the Castelnuovo-Mumford regularity of <i>S</i>/<i>I</i><sub><i>G</i></sub> when <i>G</i> = <i>G</i><sub>1</sub> ◦ <i>G</i><sub>2</sub> or <i>G</i> = <i>G</i><sub>1</sub> * <i>G</i><sub>2</sub> is a graph obtained from Cohen-Macaulay bipartite graphs <i>G</i><sub>1</sub>, <i>G</i><sub>2</sub> by the ◦ operation or * operation, respectively.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces","authors":"Toshihide Futamura, Tetsu Shimomura","doi":"10.21136/cmj.2024.0133-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0133-24","url":null,"abstract":"<p>We prove the boundedness of the generalized fractional maximal operator <i>M</i><sub><i>α</i></sub> and the generalized fractional integral operator <i>I</i><sub><i>α</i></sub> on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on linear derivations","authors":"Amit Patra","doi":"10.21136/cmj.2024.0249-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0249-23","url":null,"abstract":"","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The covariety of perfect numerical semigroups with fixed Frobenius number","authors":"María Ángeles Moreno-Frías, José Carlos Rosales","doi":"10.21136/cmj.2024.0379-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0379-23","url":null,"abstract":"<p>Let <i>S</i> be a numerical semigroup. We say that <i>h</i> ∈ ℕ <i>S</i> is an isolated gap of <i>S</i> if {<i>h</i> − 1, <i>h</i> + 1} ⊆ <i>S</i>. A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m(<i>S</i>) the multiplicity of a numerical semigroup <i>S</i>. A covariety is a nonempty family <span>(mathscr{C})</span> of numerical semigroups that fulfills the following conditions: there exists the minimum of <span>(mathscr{C})</span>, the intersection of two elements of <span>(mathscr{C})</span> is again an element of <span>(mathscr{C})</span>, and <span>(Sbackslash{{rm m}(S)}inmathscr{C})</span> for all <span>(Sinmathscr{C})</span> such that <span>(Sneqmin(mathscr{C}))</span>. We prove that the set <span>({mathscr{P}}(F)={Scolon S text{is} text{a} text{perfect} text{numerical} text{semigroup} text{with} text{Frobenius} text{number} F})</span> is a covariety. Also, we describe three algorithms which compute: the set <span>({mathscr{P}}(F))</span>, the maximal elements of <span>({mathscr{P}}(F))</span>, and the elements of <span>({mathscr{P}}(F))</span> with a given genus. A Parf-semigroup (or Psat-semigroup) is a perfect numerical semigroup that in addition is an Arf numerical semigroup (or saturated numerical semigroup), respectively. We prove that the sets Parf(<i>F</i>) = {<i>S</i>: <i>S</i> is a Parf-numerical semigroup with Frobenius number <i>F</i>} and Psat(<i>F</i>) = {<i>S</i>: <i>S</i> is a Psat-numerical semigroup with Frobenius number <i>F</i>} are covarieties. As a consequence we present some algorithms to compute Parf(<i>F</i>) and Psat(<i>F</i>).</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehmet Çelik, Luke Duane-Tessier, Ashley Marcial Rodriguez, Daniel Rodriguez, Aden Shaw
{"title":"Area differences under analytic maps and operators","authors":"Mehmet Çelik, Luke Duane-Tessier, Ashley Marcial Rodriguez, Daniel Rodriguez, Aden Shaw","doi":"10.21136/cmj.2024.0023-24","DOIUrl":"https://doi.org/10.21136/cmj.2024.0023-24","url":null,"abstract":"<p>Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping <i>h</i> and that of <i>zh</i>, we study various <i>L</i><sup>2</sup> norms for <i>T</i><sub><i>ϕ</i></sub>(<i>h</i>), where <i>T</i><sub><i>ϕ</i></sub> is the Toeplitz operator with symbol <i>ϕ</i>. In Theorem 2.1, given polynomials <i>p</i> and <i>q</i> we find a symbol <i>ϕ</i> such that <i>T</i><sub><i>ϕ</i></sub>(<i>p</i>) = <i>q</i>. We extend some of our results to the polydisc.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turán number of two vertex-disjoint copies of cliques","authors":"Caiyun Hu","doi":"10.21136/cmj.2024.0461-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0461-23","url":null,"abstract":"<p>The Turán number of a given graph <i>H</i>, denoted by ex(<i>n, H</i>), is the maximum number of edges in an <i>H</i>-free graph on n vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number ex(<i>n</i>, <i>K</i><sub><i>p</i></sub> ∪ <i>K</i><sub><i>q</i></sub>) of a vertex-disjoint union of cliques <i>K</i><sub><i>p</i></sub> and <i>K</i><sub><i>q</i></sub> for all values of <i>n</i>.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space","authors":"Michael Gil’","doi":"10.21136/cmj.2024.0468-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0468-23","url":null,"abstract":"","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141379470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximal non-pseudovaluation subrings of an integral domain","authors":"Rahul Kumar","doi":"10.21136/cmj.2024.0122-23","DOIUrl":"https://doi.org/10.21136/cmj.2024.0122-23","url":null,"abstract":"","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141382038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}