{"title":"A note on average behaviour of the Fourier coefficients of jth symmetric power L-function over certain sparse sequence of positive integers","authors":"Youjun Wang","doi":"10.21136/cmj.2024.0038-24","DOIUrl":null,"url":null,"abstract":"<p>Let <i>j</i> ⩾ 2 be a given integer. Let <i>H</i><sub><i>k</i></sub>* be the set of all normalized primitive holomorphic cusp forms of even integral weight <i>k</i> ⩾ 2 for the full modulo group SL(2, ℤ). For <i>f</i> ∈ <i>H</i><sub><i>k</i></sub>*, denote by <span>\\({{\\rm{\\lambda }}_{{\\rm{sy}}{{\\rm{m}}^j}{\\kern 1pt} f}}(n)\\)</span> the <i>n</i>th normalized Fourier coefficient of <i>j</i>th symmetric power <i>L</i>-function (<i>L</i>(<i>s</i>, sym<sup><i>j</i></sup><i>f</i>)) attached to <i>f</i>. We are interested in the average behaviour of the sum </p><span>$$\\sum\\limits_{\\scriptstyle n\\, = \\,a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x \\atop \\scriptstyle \\,\\,\\,\\,\\,\\,\\,({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}{\\rm{)}} \\in \\,{{\\mathbb{Z}}^6}} {{\\rm{\\lambda }}_{{\\rm{sy}}{{\\rm{m}}^j}\\,f\\left( n \\right),}^2}$$</span><p> where <i>x</i> is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0038-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let j ⩾ 2 be a given integer. Let Hk* be the set of all normalized primitive holomorphic cusp forms of even integral weight k ⩾ 2 for the full modulo group SL(2, ℤ). For f ∈ Hk*, denote by \({{\rm{\lambda }}_{{\rm{sy}}{{\rm{m}}^j}{\kern 1pt} f}}(n)\) the nth normalized Fourier coefficient of jth symmetric power L-function (L(s, symjf)) attached to f. We are interested in the average behaviour of the sum