David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell
{"title":"增强幂图具有普遍顶点的有限群的特征","authors":"David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell","doi":"10.21136/cmj.2024.0065-24","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a finite group and construct a graph Δ(<i>G</i>) by taking <i>G</i> {1} as the vertex set of Δ(<i>G</i>) and by drawing an edge between two vertices <i>x</i> and <i>y</i> if 〈<i>x</i>, <i>y</i>〉 is cyclic. Let <i>K</i>(<i>G</i>) be the set consisting of the universal vertices of Δ(<i>G</i>) along the identity element. For a solvable group <i>G</i>, we present a necessary and sufficient condition for <i>K</i>(<i>G</i>) to be nontrivial. We also develop a connection between Δ(<i>G</i>) and <i>K</i>(<i>G</i>) when ∣<i>G</i>∣ is divisible by two distinct primes and the diameter of Δ(<i>G</i>) is 2.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing finite groups whose enhanced power graphs have universal vertices\",\"authors\":\"David G. Costanzo, Mark L. Lewis, Stefano Schmidt, Eyob Tsegaye, Gabe Udell\",\"doi\":\"10.21136/cmj.2024.0065-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a finite group and construct a graph Δ(<i>G</i>) by taking <i>G</i> {1} as the vertex set of Δ(<i>G</i>) and by drawing an edge between two vertices <i>x</i> and <i>y</i> if 〈<i>x</i>, <i>y</i>〉 is cyclic. Let <i>K</i>(<i>G</i>) be the set consisting of the universal vertices of Δ(<i>G</i>) along the identity element. For a solvable group <i>G</i>, we present a necessary and sufficient condition for <i>K</i>(<i>G</i>) to be nontrivial. We also develop a connection between Δ(<i>G</i>) and <i>K</i>(<i>G</i>) when ∣<i>G</i>∣ is divisible by two distinct primes and the diameter of Δ(<i>G</i>) is 2.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0065-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0065-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是一个有限群,以 G {1} 作为 Δ(G) 的顶点集,并在〈x, y〉循环时在两个顶点 x 和 y 之间画一条边,从而构造一个图 Δ(G)。设 K(G) 是由Δ(G) 沿同一元素的普遍顶点组成的集合。对于可解群 G,我们提出了 K(G) 是非微观的必要条件和充分条件。当 ∣G∣ 被两个不同的素数整除且 Δ(G) 的直径为 2 时,我们还发展了 Δ(G) 与 K(G) 之间的联系。
Characterizing finite groups whose enhanced power graphs have universal vertices
Let G be a finite group and construct a graph Δ(G) by taking G {1} as the vertex set of Δ(G) and by drawing an edge between two vertices x and y if 〈x, y〉 is cyclic. Let K(G) be the set consisting of the universal vertices of Δ(G) along the identity element. For a solvable group G, we present a necessary and sufficient condition for K(G) to be nontrivial. We also develop a connection between Δ(G) and K(G) when ∣G∣ is divisible by two distinct primes and the diameter of Δ(G) is 2.