关于第 j 次对称幂 L 函数在某些正整数稀疏序列上的傅立叶系数平均行为的说明

IF 0.4 4区 数学 Q4 MATHEMATICS
Youjun Wang
{"title":"关于第 j 次对称幂 L 函数在某些正整数稀疏序列上的傅立叶系数平均行为的说明","authors":"Youjun Wang","doi":"10.21136/cmj.2024.0038-24","DOIUrl":null,"url":null,"abstract":"<p>Let <i>j</i> ⩾ 2 be a given integer. Let <i>H</i><sub><i>k</i></sub>* be the set of all normalized primitive holomorphic cusp forms of even integral weight <i>k</i> ⩾ 2 for the full modulo group SL(2, ℤ). For <i>f</i> ∈ <i>H</i><sub><i>k</i></sub>*, denote by <span>\\({{\\rm{\\lambda }}_{{\\rm{sy}}{{\\rm{m}}^j}{\\kern 1pt} f}}(n)\\)</span> the <i>n</i>th normalized Fourier coefficient of <i>j</i>th symmetric power <i>L</i>-function (<i>L</i>(<i>s</i>, sym<sup><i>j</i></sup><i>f</i>)) attached to <i>f</i>. We are interested in the average behaviour of the sum </p><span>$$\\sum\\limits_{\\scriptstyle n\\, = \\,a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x \\atop \\scriptstyle \\,\\,\\,\\,\\,\\,\\,({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}{\\rm{)}} \\in \\,{{\\mathbb{Z}}^6}} {{\\rm{\\lambda }}_{{\\rm{sy}}{{\\rm{m}}^j}\\,f\\left( n \\right),}^2}$$</span><p> where <i>x</i> is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"25 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on average behaviour of the Fourier coefficients of jth symmetric power L-function over certain sparse sequence of positive integers\",\"authors\":\"Youjun Wang\",\"doi\":\"10.21136/cmj.2024.0038-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>j</i> ⩾ 2 be a given integer. Let <i>H</i><sub><i>k</i></sub>* be the set of all normalized primitive holomorphic cusp forms of even integral weight <i>k</i> ⩾ 2 for the full modulo group SL(2, ℤ). For <i>f</i> ∈ <i>H</i><sub><i>k</i></sub>*, denote by <span>\\\\({{\\\\rm{\\\\lambda }}_{{\\\\rm{sy}}{{\\\\rm{m}}^j}{\\\\kern 1pt} f}}(n)\\\\)</span> the <i>n</i>th normalized Fourier coefficient of <i>j</i>th symmetric power <i>L</i>-function (<i>L</i>(<i>s</i>, sym<sup><i>j</i></sup><i>f</i>)) attached to <i>f</i>. We are interested in the average behaviour of the sum </p><span>$$\\\\sum\\\\limits_{\\\\scriptstyle n\\\\, = \\\\,a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x \\\\atop \\\\scriptstyle \\\\,\\\\,\\\\,\\\\,\\\\,\\\\,\\\\,({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}{\\\\rm{)}} \\\\in \\\\,{{\\\\mathbb{Z}}^6}} {{\\\\rm{\\\\lambda }}_{{\\\\rm{sy}}{{\\\\rm{m}}^j}\\\\,f\\\\left( n \\\\right),}^2}$$</span><p> where <i>x</i> is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).</p>\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0038-24\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0038-24","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 j ⩾ 2 为给定整数。让 Hk* 是全模态群 SL(2, ℤ)的偶数积分权重 k ⩾ 2 的所有归一化原始全形顶点形式的集合。对于 f∈ Hk*,用 \({{\rm{\lambda }}_{{\rm{sy}}{{\rm{m}}^j}{kern 1pt}} f}}(n)\) 表示连接到 f 的第 j 个对称幂 L 函数 (L(s, symjf)) 的第 n 个归一化傅里叶系数。我们感兴趣的是总和 $$\sum\limits_{\scriptstyle n\, = \、a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x \atop \scriptstyle \,\,\,({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}{\rm{)}}。\in\,{{mathbb{Z}}^6}}{{\rm{lambda }}_{{\rm{sy}}{{\rm{m}}^j}}\,f\left( n \right),}^2}$$ 其中 x 足够大,这改进了 A. Sharma 和 A. Sankaranarayanan (2023) 最近的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on average behaviour of the Fourier coefficients of jth symmetric power L-function over certain sparse sequence of positive integers

Let j ⩾ 2 be a given integer. Let Hk* be the set of all normalized primitive holomorphic cusp forms of even integral weight k ⩾ 2 for the full modulo group SL(2, ℤ). For fHk*, denote by \({{\rm{\lambda }}_{{\rm{sy}}{{\rm{m}}^j}{\kern 1pt} f}}(n)\) the nth normalized Fourier coefficient of jth symmetric power L-function (L(s, symjf)) attached to f. We are interested in the average behaviour of the sum

$$\sum\limits_{\scriptstyle n\, = \,a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2x \atop \scriptstyle \,\,\,\,\,\,\,({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}{\rm{)}} \in \,{{\mathbb{Z}}^6}} {{\rm{\lambda }}_{{\rm{sy}}{{\rm{m}}^j}\,f\left( n \right),}^2}$$

where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信