Lipschitz constants for a hyperbolic type metric under Möbius transformations

IF 0.4 4区 数学 Q4 MATHEMATICS
{"title":"Lipschitz constants for a hyperbolic type metric under Möbius transformations","authors":"","doi":"10.21136/cmj.2024.0366-23","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>D</em> be a nonempty open set in a metric space (<em>X, d</em>) with <em>∂D</em> ≠ Ø. Define <span> <span>$$h_{D,c}(x,y)=\\log\\left(1+c{{{d(x,y)}}\\over{{\\sqrt{d_{D}(x)d_{D}(y)}}}}\\right).$$</span> </span> where <em>d</em><sub><em>D</em></sub>(<em>x</em>) = <em>d</em>(<em>x, ∂D</em>) is the distance from <em>x</em> to the boundary of <em>D</em>. For every <em>c</em> ⩾ 2, <em>h</em><sub><em>D,c</em></sub> is a metric. We study the sharp Lipschitz constants for the metric <em>h</em><sub><em>D,c</em></sub> under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"11 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0366-23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let D be a nonempty open set in a metric space (X, d) with ∂D ≠ Ø. Define $$h_{D,c}(x,y)=\log\left(1+c{{{d(x,y)}}\over{{\sqrt{d_{D}(x)d_{D}(y)}}}}\right).$$ where dD(x) = d(x, ∂D) is the distance from x to the boundary of D. For every c ⩾ 2, hD,c is a metric. We study the sharp Lipschitz constants for the metric hD,c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

莫比乌斯变换下双曲型度量的 Lipschitz 常量
定义 $$h_{D,c}(x,y)=\log\left(1+c{{d(x,y)}}over\{{sqrt{d_{D}(x)d_{D}(y)}}}}\right).$$ 其中 dD(x) = d(x, ∂D) 是 x 到 D 边界的距离。对于每一个 c ⩾ 2,hD,c 都是一个度量。我们将研究在单位球、上半空间和穿刺单位球的莫比乌斯变换下,度量 hD,c 的利普希兹常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信