{"title":"Lipschitz constants for a hyperbolic type metric under Möbius transformations","authors":"","doi":"10.21136/cmj.2024.0366-23","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>D</em> be a nonempty open set in a metric space (<em>X, d</em>) with <em>∂D</em> ≠ Ø. Define <span> <span>$$h_{D,c}(x,y)=\\log\\left(1+c{{{d(x,y)}}\\over{{\\sqrt{d_{D}(x)d_{D}(y)}}}}\\right).$$</span> </span> where <em>d</em><sub><em>D</em></sub>(<em>x</em>) = <em>d</em>(<em>x, ∂D</em>) is the distance from <em>x</em> to the boundary of <em>D</em>. For every <em>c</em> ⩾ 2, <em>h</em><sub><em>D,c</em></sub> is a metric. We study the sharp Lipschitz constants for the metric <em>h</em><sub><em>D,c</em></sub> under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0366-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let D be a nonempty open set in a metric space (X, d) with ∂D ≠ Ø. Define $$h_{D,c}(x,y)=\log\left(1+c{{{d(x,y)}}\over{{\sqrt{d_{D}(x)d_{D}(y)}}}}\right).$$ where dD(x) = d(x, ∂D) is the distance from x to the boundary of D. For every c ⩾ 2, hD,c is a metric. We study the sharp Lipschitz constants for the metric hD,c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.