Lipschitz constants for a hyperbolic type metric under Möbius transformations

Pub Date : 2024-02-12 DOI:10.21136/cmj.2024.0366-23
{"title":"Lipschitz constants for a hyperbolic type metric under Möbius transformations","authors":"","doi":"10.21136/cmj.2024.0366-23","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>D</em> be a nonempty open set in a metric space (<em>X, d</em>) with <em>∂D</em> ≠ Ø. Define <span> <span>$$h_{D,c}(x,y)=\\log\\left(1+c{{{d(x,y)}}\\over{{\\sqrt{d_{D}(x)d_{D}(y)}}}}\\right).$$</span> </span> where <em>d</em><sub><em>D</em></sub>(<em>x</em>) = <em>d</em>(<em>x, ∂D</em>) is the distance from <em>x</em> to the boundary of <em>D</em>. For every <em>c</em> ⩾ 2, <em>h</em><sub><em>D,c</em></sub> is a metric. We study the sharp Lipschitz constants for the metric <em>h</em><sub><em>D,c</em></sub> under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0366-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let D be a nonempty open set in a metric space (X, d) with ∂D ≠ Ø. Define $$h_{D,c}(x,y)=\log\left(1+c{{{d(x,y)}}\over{{\sqrt{d_{D}(x)d_{D}(y)}}}}\right).$$ where dD(x) = d(x, ∂D) is the distance from x to the boundary of D. For every c ⩾ 2, hD,c is a metric. We study the sharp Lipschitz constants for the metric hD,c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

分享
查看原文
莫比乌斯变换下双曲型度量的 Lipschitz 常量
定义 $$h_{D,c}(x,y)=\log\left(1+c{{d(x,y)}}over\{{sqrt{d_{D}(x)d_{D}(y)}}}}\right).$$ 其中 dD(x) = d(x, ∂D) 是 x 到 D 边界的距离。对于每一个 c ⩾ 2,hD,c 都是一个度量。我们将研究在单位球、上半空间和穿刺单位球的莫比乌斯变换下,度量 hD,c 的利普希兹常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信