Partitioning planar graph of girth 5 into two forests with maximum degree 4

Pub Date : 2024-05-30 DOI:10.21136/cmj.2024.0394-21
Min Chen, André Raspaud, Weifan Wang, Weiqiang Yu
{"title":"Partitioning planar graph of girth 5 into two forests with maximum degree 4","authors":"Min Chen, André Raspaud, Weifan Wang, Weiqiang Yu","doi":"10.21136/cmj.2024.0394-21","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>G</i> = (<i>V, E</i>), if we can partition the vertex set <i>V</i> into two nonempty subsets <i>V</i><sub>1</sub> and <i>V</i><sub>2</sub> which satisfy Δ(<i>G</i>[<i>V</i><sub>1</sub>]) ⩽ <i>d</i><sub>1</sub> and Δ(<i>G</i>[<i>V</i><sub>2</sub>]) ⩽ <i>d</i><sub>2</sub>, then we say <i>G</i> has a (<span>\\({{\\rm{\\Delta }}_{{d_1}}}\\,,{{\\rm{\\Delta }}_{{d_2}}}\\)</span>)-partition. And we say <i>G</i> admits an (<span>\\({F_{d_{1}}}, {F_{d_{2}}}\\)</span>)-partition if <i>G</i>[<i>V</i><sub>1</sub>] and <i>G</i>[<i>V</i><sub>2</sub>] are both forests whose maximum degree is at most <i>d</i><sub>1</sub> and <i>d</i><sub>2</sub>, respectively. We show that every planar graph with girth at least 5 has an (<i>F</i><sub>4</sub>, <i>F</i><sub>4</sub>)-partition.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0394-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph G = (V, E), if we can partition the vertex set V into two nonempty subsets V1 and V2 which satisfy Δ(G[V1]) ⩽ d1 and Δ(G[V2]) ⩽ d2, then we say G has a (\({{\rm{\Delta }}_{{d_1}}}\,,{{\rm{\Delta }}_{{d_2}}}\))-partition. And we say G admits an (\({F_{d_{1}}}, {F_{d_{2}}}\))-partition if G[V1] and G[V2] are both forests whose maximum degree is at most d1 and d2, respectively. We show that every planar graph with girth at least 5 has an (F4, F4)-partition.

分享
查看原文
将周长为 5 的平面图划分为两个最大度数为 4 的森林
给定一个图 G = (V,E),如果我们可以将顶点集 V 分成两个非空子集 V1 和 V2,且这两个子集满足 Δ(G[V1]) ⩽ d1 和 Δ(G[V2]) ⩽ d2、那么我们说 G 有一个 (\({{\rm{\Delta }}_{d_1}}}\,,{{\rm{\Delta }}_{d_2}}\))-partition.如果 G[V1] 和 G[V2] 都是最大度分别最多为 d1 和 d2 的森林,我们就说 G 有一个 (\({F_{d_{1}}}, {F_{d_{2}}}))-分区。我们证明,每个周长至少为 5 的平面图都有一个 (F4, F4) 分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信