{"title":"Partitioning planar graph of girth 5 into two forests with maximum degree 4","authors":"Min Chen, André Raspaud, Weifan Wang, Weiqiang Yu","doi":"10.21136/cmj.2024.0394-21","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>G</i> = (<i>V, E</i>), if we can partition the vertex set <i>V</i> into two nonempty subsets <i>V</i><sub>1</sub> and <i>V</i><sub>2</sub> which satisfy Δ(<i>G</i>[<i>V</i><sub>1</sub>]) ⩽ <i>d</i><sub>1</sub> and Δ(<i>G</i>[<i>V</i><sub>2</sub>]) ⩽ <i>d</i><sub>2</sub>, then we say <i>G</i> has a (<span>\\({{\\rm{\\Delta }}_{{d_1}}}\\,,{{\\rm{\\Delta }}_{{d_2}}}\\)</span>)-partition. And we say <i>G</i> admits an (<span>\\({F_{d_{1}}}, {F_{d_{2}}}\\)</span>)-partition if <i>G</i>[<i>V</i><sub>1</sub>] and <i>G</i>[<i>V</i><sub>2</sub>] are both forests whose maximum degree is at most <i>d</i><sub>1</sub> and <i>d</i><sub>2</sub>, respectively. We show that every planar graph with girth at least 5 has an (<i>F</i><sub>4</sub>, <i>F</i><sub>4</sub>)-partition.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0394-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph G = (V, E), if we can partition the vertex set V into two nonempty subsets V1 and V2 which satisfy Δ(G[V1]) ⩽ d1 and Δ(G[V2]) ⩽ d2, then we say G has a (\({{\rm{\Delta }}_{{d_1}}}\,,{{\rm{\Delta }}_{{d_2}}}\))-partition. And we say G admits an (\({F_{d_{1}}}, {F_{d_{2}}}\))-partition if G[V1] and G[V2] are both forests whose maximum degree is at most d1 and d2, respectively. We show that every planar graph with girth at least 5 has an (F4, F4)-partition.