超薛定谔代数上的非重模块

IF 0.4 4区 数学 Q4 MATHEMATICS
Xinyue Wang, Liangyun Chen, Yao Ma
{"title":"超薛定谔代数上的非重模块","authors":"Xinyue Wang, Liangyun Chen, Yao Ma","doi":"10.21136/cmj.2024.0030-23","DOIUrl":null,"url":null,"abstract":"<p>We construct a family of non-weight modules which are free <span>\\(U(\\frak{h})\\)</span>-modules of rank 2 over the <i>N</i> = 1 super Schrödinger algebra in (1+1)-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free <span>\\(U(\\frak{h})\\)</span>-modules of rank 2 over <span>\\(\\frak{osp}(1\\mid 2)\\)</span> are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.</p>","PeriodicalId":50596,"journal":{"name":"Czechoslovak Mathematical Journal","volume":"10 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-weight modules over the super Schrödinger algebra\",\"authors\":\"Xinyue Wang, Liangyun Chen, Yao Ma\",\"doi\":\"10.21136/cmj.2024.0030-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a family of non-weight modules which are free <span>\\\\(U(\\\\frak{h})\\\\)</span>-modules of rank 2 over the <i>N</i> = 1 super Schrödinger algebra in (1+1)-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free <span>\\\\(U(\\\\frak{h})\\\\)</span>-modules of rank 2 over <span>\\\\(\\\\frak{osp}(1\\\\mid 2)\\\\)</span> are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.</p>\",\"PeriodicalId\":50596,\"journal\":{\"name\":\"Czechoslovak Mathematical Journal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czechoslovak Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/cmj.2024.0030-23\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czechoslovak Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/cmj.2024.0030-23","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一个非重模块族,它们是(1+1)维时空中N = 1超薛定谔代数上秩为2的自由(U(\frak{h})\)模块。我们确定了这些模块的同构类。特别是,我们还构造并分类了在(1+1维时空)的N = 1超薛定谔代数上的秩为2的自由(U(\frak{h})\)模块。此外,我们还得到了这些模块是简单模块的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-weight modules over the super Schrödinger algebra

We construct a family of non-weight modules which are free \(U(\frak{h})\)-modules of rank 2 over the N = 1 super Schrödinger algebra in (1+1)-dimensional spacetime. We determine the isomorphism classes of these modules. In particular, free \(U(\frak{h})\)-modules of rank 2 over \(\frak{osp}(1\mid 2)\) are also constructed and classified. Moreover, we obtain the sufficient and necessary conditions for such modules to be simple.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Czechoslovak Mathematical Journal publishes original research papers of high scientific quality in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信