M Dilruba Geyikoglu, Hilal Koc Polat, Bulent Cavusoglu, Mehmet Ertugrul
{"title":"Investigation of the effects of terahertz ablation treatment on different cancers.","authors":"M Dilruba Geyikoglu, Hilal Koc Polat, Bulent Cavusoglu, Mehmet Ertugrul","doi":"10.1080/15368378.2025.2500982","DOIUrl":"10.1080/15368378.2025.2500982","url":null,"abstract":"<p><p>Terahertz (THz) waves can overcome the side effects of traditional cancer treatment methods with their high absorption by water molecules and provide a new opportunity for the development of cancer treatment. In this study, the effect of a THz ablation system operating at 1.65 THz, recommended for use in cancer treatment, in the treatment of various cancers has been investigated. The proposed system includes three components to ensure high treatment achievement drive and electromagnetic compatibility. The first is a high-performance antenna that will generate radiation at 1.65 THz; the second is a rectangular waveguide that will direct the antenna radiation without loss; and the third is a compact pyramid-structure beam focusing apparatus that will increase focus. In silico studies were carried out for the treatment effects of the proposed system on breast, colon, and skin cancers. For terahertz ablation, treatment effects were examined using voxel data from eight people. Achievement drive parameters such as electric field, magnetic field, specific absorption rate, temperature, and tissue damage rate on healthy and diseased tissues were examined in detail. Our findings show that treatment temperature values have been reached with the THz ablation system depending on the exposure time and cancerous tissue location, and it has been determined that a high rate of tissue damage occurred. No unwanted secondary hotspots have been encountered during the treatment. Consequently, the therapeutic potential of the proposed THz wave ablation system on different cancers encourages further studies to determine the sensitivity and specificity of the system.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"279-293"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hatice Hancı, Engin Yenilmez, Selim Demir, Mehmet Yıldırım, Öznur Gedikli, Haydar Kaya
{"title":"The effect on rat peripheral nerve morphology and function of a 900-MHz electromagnetic field applied in the prenatal period.","authors":"Hatice Hancı, Engin Yenilmez, Selim Demir, Mehmet Yıldırım, Öznur Gedikli, Haydar Kaya","doi":"10.1080/15368378.2025.2479517","DOIUrl":"10.1080/15368378.2025.2479517","url":null,"abstract":"<p><p>The purpose of this study was to investigate the effects of a 900 megahertz (MHz) electromagnetic field (EMF) applied in the prenatal period on rat peripheral nerve morphology, nerve conduction velocity, and locomotor activity. Nine pregnant Sprague Dawley rats were assigned into three groups. No procedure was applied to the first group (control). The second (sham) group was placed inside an EMF cage for 1 h a day throughout the experiment (days 1-21 of pregnancy), but was not exposed to EMF. The third group (EMF) was placed inside the EMF cage for 1 h a day throughout the experiment (days 1-21 of pregnancy) and exposed to a 900 MHz EMF. No procedure was applied to the newborn pups until postnatal (PN) day 21, and new groups were constituted from among these. All the newly established groups were subjected to the open field and rotarod tests on PN days 21 and 60, after which electrophysiological measurements were performed on the groups in line with the study protocol. Sciatic nerves obtained from the animals sacrificed on PN day 60 were subjected to histopathological, histomorphometric, immunohistochemical, and biochemical analyses. In light of the study results, we concluded that prenatal application of a 900 MHz EMF adversely affects rat peripheral nerve development, and that these effects persist up to adulthood such as to be detectable in the sciatic nerve morphology, but that these morphological changes are not sufficiently severe to affect functional associated with the sciatic nerve.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"251-266"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143659590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong-Fang Zou, Zhi-Hui Li, Ying-Bao Liu, Chang-Zhen Wang
{"title":"Progress in the study of the effects of electromagnetic radiation on the mood and rhythm.","authors":"Dong-Fang Zou, Zhi-Hui Li, Ying-Bao Liu, Chang-Zhen Wang","doi":"10.1080/15368378.2025.2460971","DOIUrl":"10.1080/15368378.2025.2460971","url":null,"abstract":"<p><p>The ever-expanding use of a large number of electrical appliances and mobile communication systems, which outnumber the global population, emit electromagnetic radiation through mobile telephones, power stations, transmission lines, radar, microwave ovens, televisions, refrigerators, therapeutic and other electronic devices. Electromagnetic radiation has been classified by the International Agency for Research on Cancer (IARC) as possibly carcinogenic to humans (Group 2B). A large number of research results show that short-term and long-term exposure to electromagnetic radiation can lead to anxiety, depression, decreased learning ability, memory loss, sleep rhythm disorders and other adverse effects. Sleep rhythm disorders affect many people worldwide and may be associated with psychiatric disorders such as anxiety and depression. In this review, we summarise key experiments related to the effects of electric field exposure on mood and rhythms in animal and cellular studies over the past decade, describe the effects of electromagnetic radiation on emotional behaviors and circadian rhythms in humans and mammals, and explore the relationship between electromagnetic radiation,mood and rhythms as well as its underlying mechanisms of action. Most animal studies suggest that electromagnetic radiation may affect the physiological organization and functioning of the brain, influence neurotransmitters and receptors, interfere with neuronal formation and structure, or alter associated endocrine hormones and free radicals, which may lead to the unfavorable development of psychiatric disorders and sleep rhythm disorders. This summary may provide researchers with better clues and ideas to develop therapeutic solutions with sleep disorders and depressive psychiatric disorders.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"212-227"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coati optimization algorithm for brain tumor identification based on MRI with utilizing phase-aware composite deep neural network.","authors":"Rajesh Kumar Thangavel, Antony Allwyn Sundarraj, Jayabrabu Ramakrishnan, Krishnasamy Balasubramanian","doi":"10.1080/15368378.2024.2401540","DOIUrl":"10.1080/15368378.2024.2401540","url":null,"abstract":"<p><p>Brain tumors can cause difficulties in normal brain function and are capable of developing in various regions of the brain. Malignant tumours can develop quickly, pass through neighboring tissues, and extend to further brain regions or the central nervous system. In contrast, healthy tumors typically develop slowly and do not invade surrounding tissues. Individuals frequently struggle with sensory abnormalities, motor deficiencies affecting coordination, and cognitive impairments affecting memory and focus. In this research, Utilizing Phase-aware Composite Deep Neural Network Optimized with Coati Optimized Algorithm for Brain Tumor Identification Based on Magnetic resonance imaging (PACDNN-COA-BTI-MRI) is proposed. First, input images are taken from the brain tumour Dataset. To execute this, the input image is pre-processed using Multivariate Fast Iterative Filtering (MFIF) and it reduces the occurrence of over-fitting from the collected dataset; then feature extraction using Self-Supervised Nonlinear Transform (SSNT) to extract essential features like model, shape, and intensity. Then, the proposed PACDNN-COA-BTI-MRI is implemented in Matlab and the performance metrics Recall, Accuracy, F1-Score, Precision Specificity and ROC are analysed. Performance of the PACDNN-COA-BTI-MRI approach attains 16.7%, 20.6% and 30.5% higher accuracy; 19.9%, 22.2% and 30.1% higher recall and 16.7%, 21.9% and 30.8% higher precision when analysed through existing techniques brain tumor identification using MRI-Based Deep Learning Approach for Efficient Classification of Brain Tumor (MRI-DLA-ECBT), MRI-Based Brain Tumor Detection using Convolutional Deep Learning Methods and Chosen Machine Learning Techniques (MRI-BTD-CDMLT) and MRI-Based Brain Tumor Image Detection using CNN-Based Deep Learning Method (MRI-BTID-CNN) methods, respectively.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"119-136"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arshad Riaz, Muhammad Naeem Aslam, Mahreen Ali Awan, Muhammad Waheed Aslam, Sami Ullah Khan, Safia Akram, Emad E Mahmoud
{"title":"Peristaltic flow of electromagnetic tri-hybrid Carreau nanofluid using backpropagated Levenberg-Marquardt technique: an entropy generation analysis in blood cells.","authors":"Arshad Riaz, Muhammad Naeem Aslam, Mahreen Ali Awan, Muhammad Waheed Aslam, Sami Ullah Khan, Safia Akram, Emad E Mahmoud","doi":"10.1080/15368378.2025.2469699","DOIUrl":"10.1080/15368378.2025.2469699","url":null,"abstract":"<p><p>The present research concentrates on examining entropy generation during the flow phenomenon of a three-dimensional peristaltic motion of a magnetized tri-hybrid nanofluid within a curved rectangular duct using a machine learning technique called backpropagated Levenberg-Marquardt (BLMT). The Carreau constitutive model is used for base liquid (blood). To obtain the most accurate solutions for the governing equations, an analytical tool called the Homotopy Perturbation Method (HPM) is utilized along with a machine learning methodology ANN-BLMT method on MatLab. The data of HPM and machine learning are also compared to assess how the framework of partial differential equations (PDEs) occurring in the problem can be improved. It shows the highest correlations between output and prediction of ANN-BLMT method. The convergence analysis reveals that for two scenarios, velocity exhibits the best validation performance values around <math><mn>7.3117</mn><mo>×</mo><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></math> and <math><mn>1.0082</mn><mo>×</mo><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mrow></math>. A detailed comparison between blood and nanofluid has been presented graphically to enhance the benefits of ternary hybrid nanoparticles in a simple base fluid. It is also found that the velocity of the blood can be slowed by the curvature increase and because of the increment of tri-hybrid nanoparticles in pure blood. It is also noted that the rate of heat transfer for ternary hybrid nanofluids is greater than that of a simple blood. Research findings have obvious implications for comprehending and enhancing peristaltic dynamics in biological processes such as the intestinal tract.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"193-211"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AI-based prediction of flow dynamics of blood blended with gold and maghemite nanoparticles in an electromagnetic microchannel under abruptly changes in pressure gradient.","authors":"Poly Karmakar, Sukanya Das, Sanatan Das","doi":"10.1080/15368378.2025.2501733","DOIUrl":"10.1080/15368378.2025.2501733","url":null,"abstract":"<p><p>In cardiovascular research, electromagnetic fields (EMFs) induced by Riga plates are applied to study and potentially manipulate blood flow dynamics, offering insights for therapies against arterial plaque deposition and for understanding varied blood flow behaviors. This research focuses on predicting the flow patterns of blood infused with gold and maghemite nanoparticles (gold-maghemite/blood) inside an EM microchannel under these electromagnetic influences and abruptly change in pressure gradient. The study models these flows by considering radiation heat emission and Darcy drag forces within porous media. Mathematical representation involves time-variant partial differential equations, resolved through Laplace transform (LT) to yield compact-form expressions for the model variables. The outcomes, including shear stress (SS) and rate of heat transfer (RHT) across the microchannel, are analyzed and displayed graphically, highlighting the effects of modified Hartmann number and electrode width on these parameters. Hybrid nano-blood (HNB) and nano-blood (NB) exhibit distinct thermal characteristics, with HNB transferring more heat within the blood flow. These study implements a cutting-edge AI-powered approach for high-fidelity evaluation of critical flow parameters, achieving unprecedented prediction accuracy. Validation results confirm the algorithm's excellence, with SS predictions reaching 99.552% (testing) and 97.019% (cross-validation) accuracy, while RHT predictions show 100% testing accuracy and 97.987% cross-validation reliability. This convergence of nanotechnology with advanced machine learning paves the way for transformative clinical applications that could redefine standards of care in surgical oncology, interventional cardiology, and therapeutic radiology. This model underpins potential applications such as controlled drug release and magnetic fluid hyperthermia, enhancing procedures like cardiopulmonary bypass, vascular surgery, and diagnostic imaging.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"294-324"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144038815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vascular mechanoreceptor magnetic activation, hemodynamic evidence and potential clinical outcomes.","authors":"Juraj Gmitrov","doi":"10.1080/15368378.2025.2468248","DOIUrl":"10.1080/15368378.2025.2468248","url":null,"abstract":"<p><p>There is sufficient proof that static magnetic fields (SMFs) of different parameters have a significant effect on the cardiovascular system. The sometimes contradictory, opposite-directional nature of SMF's hemodynamic effect generates uncertainty; therefore, an explanation of the underlying mechanisms is required. Following SMF selective carotid baroreceptors or microvascular net exposure, both high and low blood pressure (BP)/vascular tone starting conditions showed a return to normal. Beyond the previous descriptions of SMF's simple hemodynamic results, the current study aims to clarify the physiology of the SMF BP/vascular tone normalizing effects. The examination of available literature and hemodynamic tracings provided strong evidence that mechanoreceptor magnetic activation is concealed behind SMF vascular tone adjustment (increasing or decreasing as needed), filling in the knowledge gap regarding SMF opposite directional vascular tone normalizing outcomes. It has been proposed that cytoskeletal actin filament rearrangement, mechanically-gated Ca<sup>2+</sup> influx, and nitric oxide (NO) activity may strengthen SMF's vascular mechanoreceptor sensing/regulation ability, modifying BP and vascular tone features in a hemodynamic normalizing pattern. It is suggested that baro/mechanoreceptor magnetic activation physiology is a unique mechanism of the magneto-cardiovascular interaction with substantial potential for cardiovascular protection.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"228-249"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143544241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating PEMF vagus nerve stimulation through neck application: A randomized placebo study with volunteers.","authors":"I Jerman, M Škafar, J Pihir, M Senica","doi":"10.1080/15368378.2025.2462649","DOIUrl":"10.1080/15368378.2025.2462649","url":null,"abstract":"<p><p>This study investigates the effects of pulsed electromagnetic field (PEMF) therapy on vagus nerve stimulation through non-invasive neck applications. Exploring the efficacy of PEMF across different frequencies (6 hz, 16 hz, and 32 hz), this double-blind placebo-controlled trial included 485 volunteers to assess its impact on autonomic nervous system functions, particularly targeting sleep disturbances and anxiety. Results demonstrated significant improvements in sleep quality and reduction in anxiety levels, especially notable at 16 hz. These findings suggest that PEMF therapy, by modulating autonomic activity, offers a beneficial non-pharmacological treatment option for related disorders.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"173-186"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143460500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Poly Karmakar, Sukanya Das, Sayan Das, Sanatan Das
{"title":"Neuro-computational simulation of blood flow loaded with gold and maghemite nanoparticles inside an electromagnetic microchannel under rapid and unexpected change in pressure gradient.","authors":"Poly Karmakar, Sukanya Das, Sayan Das, Sanatan Das","doi":"10.1080/15368378.2025.2453923","DOIUrl":"10.1080/15368378.2025.2453923","url":null,"abstract":"<p><p>In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method. Results, including shear stress (SS) and rate of heat transfer (RHT), are graphically detailed, demonstrating changes in blood velocity profile with modifications in the Hartmann number and the width of electrodes, and differences in temperature and RHT between hybrid nano-blood (HNB) and nano-blood (NB). The key results indicate an increase in blood velocity distribution with higher modified Hartmann number, and a decrease with wider electrodes. Temperature is elevated in both hybrid nano-blood (HNB) and nano-blood (NB). Notably, HNB with gold and maghemite enhances heat transmission in the flow. Furthermore, an artificial intelligence-driven methodology employing an artificial neural network (ANN) has been incorporated to facilitate rapid and precise evaluations of SS and RHT, demonstrating remarkable predictive accuracy. The proposed algorithm exhibits outstanding accuracy, achieving 99.998% on the testing dataset and 96.843% during cross-validation for predicting SS, and 100% on the testing dataset, and 95.008% during cross-validation for predicting RHT. The implementation of nanotechnology with artificial intelligence promises new tools for doctors and surgeons, potentially transforming patient care in fields such as oncology, cardiology, and radiology. This model also facilitates the generation of precise electromagnetic fields to guide drug-loaded magnetic nanoparticles for applications in targeted drug delivery, hyperthermia treatment, MRI contrast enhancement, blood flow monitoring, cancer treatment, and controlled drug release.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"137-172"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of expectancy on fatigue by exposure to the fifth generation of mobile communication signals.","authors":"Lei Yang, Xiaotong Ding, Shun Zhang, Tongning Wu","doi":"10.1080/15368378.2025.2496151","DOIUrl":"10.1080/15368378.2025.2496151","url":null,"abstract":"<p><p>There is a long-standing debate about the relationship between Radio Frequency Electromagnetic Field (RF-EMF) exposure and fatigue. Past studies primarily rely on self-report scales to assess fatigue, but these methods are often susceptible to personal biases. Notably, the role of psychological factors in the fatigue response induce by RF-EMF exposure remains unclear. Therefore, our study focuses on exploring the impact of 5 G signal exposure on human fatigue, particularly considering the influence of expectancy induced by psychological priming on the outcomes. In this study, we recruited 21 healthy subjects who were tested in three sessions. Each session included two 30-min exposures to either real or sham 5 G signals, with the order randomized. The experiment was conducted under varying informational conditions: subjects were provided with correct, false, or no information about the order of exposure. Additionally, subjects completed a fatigue scoring questionnaire and underwent Electroencephalogram (EEG) measurements during the experiment. The statistical comparison indicates that 5 G RF-EMF exposure at routine levels does not lead to changes in EEG power. The finding reveals that the report of fatigue can be altered by the conveyed information of being exposed by 5 G signals although there is no real exposure and no detectable electrophysiological indicator. Our findings suggest that it is necessary to prevent psychological priming in any kind or to take its possible consequence into consideration, to reveal this effect of RF-EMF exposure.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"267-278"},"PeriodicalIF":1.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144004294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}