Electromagnetic Biology and Medicine最新文献

筛选
英文 中文
Design analysis and validation of coaxial probe for tissue dielectric properties evaluation used in specific absorption rate measurement. 特定吸收率测量中组织介电特性评估用同轴探头的设计分析与验证。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2022-01-02 Epub Date: 2021-12-02 DOI: 10.1080/15368378.2021.2001652
Bhukya Venkanna Naik
{"title":"Design analysis and validation of coaxial probe for tissue dielectric properties evaluation used in specific absorption rate measurement.","authors":"Bhukya Venkanna Naik","doi":"10.1080/15368378.2021.2001652","DOIUrl":"https://doi.org/10.1080/15368378.2021.2001652","url":null,"abstract":"<p><p>This study distinguishes the design and analysis of a coaxial probe for measurement of biological body dielectric properties, in this measurement estimating the human tissue-equivalent liquid (TEL) permittivity and conductivity, to monitor and maintain the international standards for specific absorption rate (SAR) evaluation over the frequency band of 800 MHz-5 GHz. In addition, deionized (DI) water and ethanediol dielectric properties have been evaluated and the designed probe results compared to the commercial Dielectric Assessment kit (DAK) 3.5 probe. The obtained results are in good agreement with each other, moreover, the SAR calculation and each source of uncertainty budget analysis are estimated. Therefore, this fabricated probe may be suitable for liquid dielectric properties measurement.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"41 1","pages":"60-70"},"PeriodicalIF":1.7,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39685807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study the change in the mosquito larvae (Culex pipiens) in water treated with short pulses electric filed. 研究短脉冲电场处理水体中蚊幼虫(库蚊)的变化。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2022-01-02 Epub Date: 2021-12-08 DOI: 10.1080/15368378.2021.2012787
Ebtesam A Mohamad, Alyaa A Elfky, Reem H El-Gebaly, Amira Afify
{"title":"Study the change in the mosquito larvae (<i>Culex pipiens</i>) in water treated with short pulses electric filed.","authors":"Ebtesam A Mohamad,&nbsp;Alyaa A Elfky,&nbsp;Reem H El-Gebaly,&nbsp;Amira Afify","doi":"10.1080/15368378.2021.2012787","DOIUrl":"https://doi.org/10.1080/15368378.2021.2012787","url":null,"abstract":"<p><p>Electrical Pulsed Field (PEF), of pulse duration in 4 milliseconds, effect on mosquito larvae (<i>Culex pipiens</i>) as aquatic insects is assessed in this work. Mosquito larvae classes have been treated with electric field power values (66.66, 83.33, 100, 116.66 V/cm) with separate pulse number (60) and other classes of various pulse numbers have been treated (20, 40, 60, 80) with power of the electrical field 100 V/cm. The findings revealed that positively significant of increase of the applied electrical field strength or increase of the number of pulses. The rise in both cases leads to an increase in the mortality of 25%, 50%, and 75% of the mosquito larvae (<i>P</i> < .05). The impact was calculated with the bioassay system on mosque larvae, SDS-PAGE for whole body proteins, enzyme analysis and ultrastructural examination using TEM. The current study reveals that a low pulsed electric field can cause mosquito larvae genotoxic, changes in the insect's body proteins, which may affect the insect's ability to live. The increase in pulsed electric field parameters also activates oxidative stress in the insect cell by disrupting its secretion of enzymes that could affect the mosquito's capabilities in the future.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"41 1","pages":"80-92"},"PeriodicalIF":1.7,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39702623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The investigation of Pulse-Modulated GSM-900 MHz electromagnetic field effects on the electrochemotherapy mechanisms in vivo. 脉冲调制GSM-900 MHz电磁场对体内化疗机制影响的研究。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2022-01-02 Epub Date: 2021-11-28 DOI: 10.1080/15368378.2021.2006689
Mahsa Mansourian, S M P Firoozabadi, Zuhair Mohammad Hassan
{"title":"The investigation of Pulse-Modulated GSM-900 MHz electromagnetic field effects on the electrochemotherapy mechanisms in vivo.","authors":"Mahsa Mansourian,&nbsp;S M P Firoozabadi,&nbsp;Zuhair Mohammad Hassan","doi":"10.1080/15368378.2021.2006689","DOIUrl":"https://doi.org/10.1080/15368378.2021.2006689","url":null,"abstract":"<p><p>Electrochemotherapy (ECT) as a tumor treatment modality is approved for cutaneous and subcutaneous tumors. The purpose of the present study was to examine the effect of 900 MHz radiofrequency (RF) pulse-modulated by 217 Hz EMFs similar to those emitted by mobile phones on the mechanisms of ECT in vivo including: tumor hypoxia and immune system response, and on tumor volume.4 T1 cells were injected subcutaneously into the right flank of Balb/c mice. The mice were exposed to RF fields at specific absorption rate (SAR) 2 W/kg for 10 min/day and then treated with ECT. Two protocols of ECT were used: ((70 V/cm-5 kHz) and 70 V/cm-4 kHz)). Tumor hypoxia was analyzed through HIF-1α immuonohistochemistry assay. Interleukin 4 (IL-4) and IFN-γ levels were estimated by enzyme-linked immunosorbent assay (ELISA) technique to evaluate immune system response. Also, tumors volume changes were measured for 24 days following the treatment. The results showed that pulse-modulated RF fields could increase hypoxia induced by ECT, significantly (about 13% in ECT (70 V/cm-5 kHz) and 11% in ECT (70 V/cm-4 kHz)). However, these fields did not have significant effect on immune system response (the levels of IL-4 and IFN-γ) and tumor volume changes induced by ECT. Our results indicated that pulse-modulated RF fields could not affect tumor volume changes in ECT with the frequency of 5 kHz and voltage of 70 V/cm efficacy in vivo. However, investigating the role of other environmental intervening factors on this protocol of ECT is recommended in further studies.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"41 1","pages":"71-79"},"PeriodicalIF":1.7,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39940626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medicinal plants in mitigating electromagnetic radiation-induced neuronal damage: a concise review. 药用植物减轻电磁辐射诱导的神经元损伤:简要综述。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2022-01-02 Epub Date: 2021-08-12 DOI: 10.1080/15368378.2021.1963762
Shamprasad Varija Raghu, Avinash Kundadka Kudva, Golgodu Krishnamurthy Rajanikant, Manjeshwar Shrinath Baliga
{"title":"Medicinal plants in mitigating electromagnetic radiation-induced neuronal damage: a concise review.","authors":"Shamprasad Varija Raghu,&nbsp;Avinash Kundadka Kudva,&nbsp;Golgodu Krishnamurthy Rajanikant,&nbsp;Manjeshwar Shrinath Baliga","doi":"10.1080/15368378.2021.1963762","DOIUrl":"https://doi.org/10.1080/15368378.2021.1963762","url":null,"abstract":"<p><p>Although the evidence is inconclusive, epidemiological studies strongly suggest that increased exposure to electromagnetic radiation (EMR) increases the risk of brain tumors, parotid gland tumors, and seminoma. The International Agency for Research on Cancer (IARC) has classified mobile phone radiofrequency radiation as possibly carcinogenic to humans (Group 2B). Humans being are inadvertently being exposed to EMR as its prevalence increases, mainly through mobile phones. Radiation exposure is unavoidable in the current context, with mobile phones being an inevitable necessity. Prudent usage of medicinal plants with a long history of mention in traditional and folklore medicine and, more importantly, are safe, inexpensive, and easily acceptable for long-term human use would be an appealing and viable option for mitigating the deleterious effects of EMR. Plants with free radical scavenging, anti-oxidant and immunomodulatory properties are beneficial in maintaining salubrious health. Green tea polyphenols, <i>Ginkgo biloba</i>, lotus seedpod procyanidins, garlic extract, <i>Loranthus longiflorus, Curcuma amada</i>, and <i>Rosmarinus officinalis</i> have all been shown to confer neuroprotective effects in validated experimental models of study. The purpose of this review is to compile for the first time the protective effects of these plants against mobile phone-induced neuronal damage, as well as to highlight the various mechanisms of action that are elicited to invoke the beneficial effects.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"41 1","pages":"1-14"},"PeriodicalIF":1.7,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39305151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effects of pulsed electromagnetic fields on tumor cell viability: a meta-analysis of in vitro randomized controlled experiments. 脉冲电磁场对肿瘤细胞活力的影响:体外随机对照实验的荟萃分析。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2021-10-02 Epub Date: 2021-07-26 DOI: 10.1080/15368378.2021.1958341
Guangzhou An, Meilun Shen, Juan Guo, Xia Miao, Yuntao Jing, Keying Zhang, Ling Guo, Junling Xing
{"title":"Effects of pulsed electromagnetic fields on tumor cell viability: a meta-analysis of in vitro randomized controlled experiments.","authors":"Guangzhou An,&nbsp;Meilun Shen,&nbsp;Juan Guo,&nbsp;Xia Miao,&nbsp;Yuntao Jing,&nbsp;Keying Zhang,&nbsp;Ling Guo,&nbsp;Junling Xing","doi":"10.1080/15368378.2021.1958341","DOIUrl":"https://doi.org/10.1080/15368378.2021.1958341","url":null,"abstract":"<p><p>Malignant tumor treatment remains a big challenge till now, and expanding literature indicated that pulsed electromagnetic fields (PEMF) is promising in tumor treatment with the advantage of safety and being economical, but it is still controversial on whether PEMF could affect the tumor cell viability. Therefore, we conducted the meta-analysis to evaluate effects of PEMF on tumor cell viability. The PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched for studies published up to February 2021. Studies on the direct effects of PEMF on tumor cell viability, determined using colorimetric analysis, were included. Two authors extracted the data and completed the quality assessment. A meta-analysis was performed to calculate the absorbance values and 95% confidence intervals (CIs) using random-effects models. Seven studies, including 32 randomized controlled experiments, were analyzed. Compared with the control group, tumor cell viability in the PEMF exposure group was obviously lower (SMD, -0.67; 95% CI: -1.12 to -0.22). The subgroup meta-analysis results showed that PEMF significantly reduced epithelial cancer cell viability (SMD, -0.58; 95% CI: -0.92 to -0.23) but had no influence on stromal tumor cell viability (SMD, -0.93; 95% CI: -0.21 to 0.15). Our study demonstrated that PEMF could inhibit tumor cell proliferation to some extent, but the risk of bias and high heterogeneity (I<sup>2</sup> > 75%) weakened the strength of the conclusions drawn from the analysis.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 4","pages":"467-474"},"PeriodicalIF":1.7,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1958341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39229357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects induced by a 50 Hz electromagnetic field and doxorubicin on Walker-256 carcinosarcoma growth and hepatic redox state in rats. 50hz电磁场和阿霉素对大鼠Walker-256癌肉瘤生长和肝脏氧化还原状态的影响。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2021-10-02 Epub Date: 2021-08-16 DOI: 10.1080/15368378.2021.1958342
Valerii E Orel, Mykhailo Krotevych, Olga Dasyukevich, Oleksandr Rykhalskyi, Liubov Syvak, Helena Tsvir, Dmytro Tsvir, Lyudmyla Garmanchuk, Valerii В Orel, Iryna Sheina, Vladyslava Rybka, Nataliia V Shults, Yuichiro J Suzuki, Sergiy G Gychka
{"title":"Effects induced by a 50 Hz electromagnetic field and doxorubicin on Walker-256 carcinosarcoma growth and hepatic redox state in rats.","authors":"Valerii E Orel,&nbsp;Mykhailo Krotevych,&nbsp;Olga Dasyukevich,&nbsp;Oleksandr Rykhalskyi,&nbsp;Liubov Syvak,&nbsp;Helena Tsvir,&nbsp;Dmytro Tsvir,&nbsp;Lyudmyla Garmanchuk,&nbsp;Valerii В Orel,&nbsp;Iryna Sheina,&nbsp;Vladyslava Rybka,&nbsp;Nataliia V Shults,&nbsp;Yuichiro J Suzuki,&nbsp;Sergiy G Gychka","doi":"10.1080/15368378.2021.1958342","DOIUrl":"https://doi.org/10.1080/15368378.2021.1958342","url":null,"abstract":"<p><p>We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect (<i>p</i> < .05). Superoxide dismutase, catalase activity and glutathione content were significantly decreased in the liver of tumor-bearing animals as compared with the control group (<i>p</i> < .05). The decreases in antioxidant defenses accompanied histological findings of suspected liver damage. However, hepatic levels of thiobarbituric acid reactive substances, an indicator of lipid peroxidation, were three times lower in EMF and DOX + EMF groups than in no treatment and DOX (<i>p</i> < .05). EMF and DOX + EMF showed significantly lower activity of serum ALT than DOX alone (<i>p</i> < .05). These results indicate that EMF treatment can inhibit tumor growth, causing less pronounced oxidative stress damage to the liver. Therefore, EMF can be used as a therapeutic strategy to influence the hepatic redox state and combat cancer with reduced side-effects.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 4","pages":"475-487"},"PeriodicalIF":1.7,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39311143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluating the thermal performance of a balloon-based renal sympathetic denervation system with array electrodes: a finite element study. 用阵列电极评估基于球囊的肾交感神经去神经系统的热性能:一项有限元研究。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2021-10-02 Epub Date: 2021-08-05 DOI: 10.1080/15368378.2021.1961266
Yanyan Cheng, Hongxing Liu, Zhen Tian, Meng Zhang, Youjun Liu, Qun Nan
{"title":"Evaluating the thermal performance of a balloon-based renal sympathetic denervation system with array electrodes: a finite element study.","authors":"Yanyan Cheng,&nbsp;Hongxing Liu,&nbsp;Zhen Tian,&nbsp;Meng Zhang,&nbsp;Youjun Liu,&nbsp;Qun Nan","doi":"10.1080/15368378.2021.1961266","DOIUrl":"https://doi.org/10.1080/15368378.2021.1961266","url":null,"abstract":"<p><p>Renal denervation transmits radiofrequency (RF) energy through an electrode to treat resistant hypertension (RH), applying ablation in the renal artery. Several experimental studies have shown that this treatment has been used effectively to treat RH. The aim of this paper is to investigate the effect of ablation parameters (i.e., electrode length, applied voltage, ablation time, and blood flow) on the temperature distribution using a balloon-based array electrodes system. A simplified three-dimensional model including four electrodes and a balloon was established. The balloon diameter was 3 mm and placed in a 5 mm diameter renal artery for forming intra-arterial occlusion. Four electrodes were mounted on the balloon and distributed in the same plane to mimic circumferential RF ablation. Computer simulations were conducted to investigate the thermal performances of the device by setting different electrode configurations, treatment protocols, and physiological factors. The thermal performances including the thermal distribution, maximum lesion depth, length, and area were analyzed. The lesion shape of the array RF electrodes was approximately a sphere with a 100% circumference coverage rate of the renal artery. The lesion depth and length increase with each factor except for blood velocity. Increasing the electrode length from 2 to 4 mm or 2 to 6 mm, the lesion depth increases by 1.15 mm and 0.54 mm at 60 s. The corresponding lesion length increases by 2.65 mm and 2.34 mm, respectively. The range of effective lesion depth is 1.90-4.90 mm, at a voltage of 15-30 V. But the peak temperature at the arterial outer wall exceeded 100 °C when the voltage is above 25 V. In tissue, the degree of thermal injury in the 2 mm area reached 100%, but in blood was not more than 5%. There was no significant difference at different flow conditions because the difference value in lesion depth was not exceeded 0.5 mm. The results showed that the balloon-based four electrodes system is expected to overcome the difficulty of incomplete ablation. In clinical application, 2 mm-electrode is recommended to avoid long wall damage as much as possible and control the voltage below 25 V. This treatment has little thermal injury on the blood, which means it may avoid coagulation formation. Moreover, the application of this device does not need to consider the difference in individual blood velocity.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 4","pages":"488-501"},"PeriodicalIF":1.7,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1961266","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39278814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical and computational modeling for the determination of optical parameters of breast cancer cell. 测定乳腺癌细胞光学参数的数学和计算模型。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2021-10-02 Epub Date: 2021-07-29 DOI: 10.1080/15368378.2021.1958339
Shadeeb Hossain, Shamera Hossain
{"title":"Mathematical and computational modeling for the determination of optical parameters of breast cancer cell.","authors":"Shadeeb Hossain,&nbsp;Shamera Hossain","doi":"10.1080/15368378.2021.1958339","DOIUrl":"https://doi.org/10.1080/15368378.2021.1958339","url":null,"abstract":"<p><p>This study enumerates the quantitative measurement of optical parameters used in several diagnostic procedures for malignant tissue. Optical diagnosis is proposed due to its non-invasive and non-destructive nature. This paper recapitulates Fresnel equation (polarization independent) to determine the characteristic critical angle of malignant tissue. The critical angle of malignant tissue is lower than healthier tissue and is therefore an optical parameter of interest for lesion tissue diagnosis. Similarly, a quantitative analysis is derived to commensurate refractive index and absorption and reflective property of tissue and its nuance with healthier counterparts. The second dichotomy of the research concentrates on comparing and validating the mathematical analysis with COMSOL Multiphysics® 5.2 simulation. The magnitude of malignant tissue reflectance is obtained across a range of incident angle ranging from 0° to 90°. The simulation results satiate the quantitative analysis with only 1.3% deviation. This quantitative result provides prospect of collaborating bio-electromagnetism results with Artificial Intelligence technology for active disease progression diagnosis utilizing minimum invasive diagnostic procedure.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 4","pages":"447-458"},"PeriodicalIF":1.7,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1958339","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39256864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Exposure to 60 Hz magnetic field can affect membrane proteins and membrane potential in human cancer cells. 暴露于60hz磁场下可影响人类癌细胞的膜蛋白和膜电位。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2021-10-02 Epub Date: 2021-08-15 DOI: 10.1080/15368378.2021.1958340
Seiya Hayashi, Makiko Kakikawa
{"title":"Exposure to 60 Hz magnetic field can affect membrane proteins and membrane potential in human cancer cells.","authors":"Seiya Hayashi,&nbsp;Makiko Kakikawa","doi":"10.1080/15368378.2021.1958340","DOIUrl":"https://doi.org/10.1080/15368378.2021.1958340","url":null,"abstract":"<p><p>The experimental data support the hypothesis that extremely low frequency magnetic field (ELF-MF) can affect cell membranes. Since our previous studies suggested that MF changes the permeability of cell membrane, in this study we focused on the cell membrane and investigated the effect of 60 Hz, 50 mT MF on the membrane potential and membrane proteins. The membrane potentials of three cultured human cancer cell lines, A549, MES-SA, and MES-SA/Dx5, were increased by exposure to ELF-MF. When exposed to MF and an anticancer drug, changes in the membrane potentials were detected in A549 and MES-SA cells, but not in the multi drug-resistant cells, MES-SA/Dx5. We examined whether MF has an influence on the membrane proteins extracted from cultured A549 cells, using DiBAC<sub>4</sub>(3) dye enhanced fluorescence binding to a hydrophobic site. The increase in fluorescence observed following MF exposure for 10 min indicated that the structure of the hydrophobic site on the membrane proteins changed and became more likely to bind the probe dye. A decrease in fluorescence was detected following exposure to MF for 240 min. These results indicated that 60 Hz, 50 mT MF causes changes in the membrane potential of cultured cancer cells and the conformation of membrane proteins extracted from cultured cancer cells, and has different effects depending on the exposure time.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 4","pages":"459-466"},"PeriodicalIF":1.7,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39314969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
The effects of pulsed electromagnetic field on experimentally induced sciatic nerve injury in rats. 脉冲电磁场对实验性大鼠坐骨神经损伤的影响。
IF 1.7 4区 生物学
Electromagnetic Biology and Medicine Pub Date : 2021-07-03 Epub Date: 2021-04-02 DOI: 10.1080/15368378.2021.1907403
Gülten Bademoğlu, Nurten Erdal, Coşar Uzun, Bahar Taşdelen
{"title":"The effects of pulsed electromagnetic field on experimentally induced sciatic nerve injury in rats.","authors":"Gülten Bademoğlu,&nbsp;Nurten Erdal,&nbsp;Coşar Uzun,&nbsp;Bahar Taşdelen","doi":"10.1080/15368378.2021.1907403","DOIUrl":"https://doi.org/10.1080/15368378.2021.1907403","url":null,"abstract":"<p><p>Some experimental research indicates that low-frequency pulsed electromagnetic field (PEMF) stimulation may accelerate regeneration in sciatic nerve injury. However, little research has examined the electrophysiological and functional properties of regenerating peripheral nerves under PEMF. The main aim of the present study is to investigate the effects of PEMF on sciatic nerve regeneration in short- and long-term processes with electrophysiologically and functionally after crushing damage. Crush lesions were performed using jewelery forceps for 30 s. After crush injury of the sciatic nerves, 24 female Wistar-Albino rats were divided into 3 groups with 8 rats in each group: SH(Sham), SNI (Sciatic Nerve Injury), SNI+PEMF(Sciatic Nerve Injury+Pulsed Electromagnetic Field). SNI+PEMF group was exposed to PEMF (4 h/day, intensity; 0.3mT, low-frequency; 2 Hz) for 40-days. Electrophysiological records (at the beginning and 1st, 2nd, 4th and 6th weeks post-crush) and functional footprints (at 1st, 2nd, 3rd, 4th, 5th and 6th weeks post crush) were measured from all groups during the experiment. The results were compared to SNI and SNI+PEMF groups, it was found that amplitude and area parameters in the first-week were significantly higher and latency was lower in the SNI+PEMF group than in the SNI group (<i>p</i> < 0,05). However, the effect of PEMF was not significant in the 2nd, 4th, 6th weeks. In addition, in the 1st and 2nd weeks, the SSI parameters were significantly higher in SNI+PMF group than SNI group (<i>p</i> < .05). These results indicate that low-frequency PEMF is not effective for long-periods of application time while PEMF may be useful during the short-term recovery period.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 3","pages":"408-419"},"PeriodicalIF":1.7,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1907403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25552630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信