Guangzhou An, Meilun Shen, Juan Guo, Xia Miao, Yuntao Jing, Keying Zhang, Ling Guo, Junling Xing
{"title":"脉冲电磁场对肿瘤细胞活力的影响:体外随机对照实验的荟萃分析。","authors":"Guangzhou An, Meilun Shen, Juan Guo, Xia Miao, Yuntao Jing, Keying Zhang, Ling Guo, Junling Xing","doi":"10.1080/15368378.2021.1958341","DOIUrl":null,"url":null,"abstract":"<p><p>Malignant tumor treatment remains a big challenge till now, and expanding literature indicated that pulsed electromagnetic fields (PEMF) is promising in tumor treatment with the advantage of safety and being economical, but it is still controversial on whether PEMF could affect the tumor cell viability. Therefore, we conducted the meta-analysis to evaluate effects of PEMF on tumor cell viability. The PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched for studies published up to February 2021. Studies on the direct effects of PEMF on tumor cell viability, determined using colorimetric analysis, were included. Two authors extracted the data and completed the quality assessment. A meta-analysis was performed to calculate the absorbance values and 95% confidence intervals (CIs) using random-effects models. Seven studies, including 32 randomized controlled experiments, were analyzed. Compared with the control group, tumor cell viability in the PEMF exposure group was obviously lower (SMD, -0.67; 95% CI: -1.12 to -0.22). The subgroup meta-analysis results showed that PEMF significantly reduced epithelial cancer cell viability (SMD, -0.58; 95% CI: -0.92 to -0.23) but had no influence on stromal tumor cell viability (SMD, -0.93; 95% CI: -0.21 to 0.15). Our study demonstrated that PEMF could inhibit tumor cell proliferation to some extent, but the risk of bias and high heterogeneity (I<sup>2</sup> > 75%) weakened the strength of the conclusions drawn from the analysis.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"40 4","pages":"467-474"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15368378.2021.1958341","citationCount":"1","resultStr":"{\"title\":\"Effects of pulsed electromagnetic fields on tumor cell viability: a meta-analysis of in vitro randomized controlled experiments.\",\"authors\":\"Guangzhou An, Meilun Shen, Juan Guo, Xia Miao, Yuntao Jing, Keying Zhang, Ling Guo, Junling Xing\",\"doi\":\"10.1080/15368378.2021.1958341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malignant tumor treatment remains a big challenge till now, and expanding literature indicated that pulsed electromagnetic fields (PEMF) is promising in tumor treatment with the advantage of safety and being economical, but it is still controversial on whether PEMF could affect the tumor cell viability. Therefore, we conducted the meta-analysis to evaluate effects of PEMF on tumor cell viability. The PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched for studies published up to February 2021. Studies on the direct effects of PEMF on tumor cell viability, determined using colorimetric analysis, were included. Two authors extracted the data and completed the quality assessment. A meta-analysis was performed to calculate the absorbance values and 95% confidence intervals (CIs) using random-effects models. Seven studies, including 32 randomized controlled experiments, were analyzed. Compared with the control group, tumor cell viability in the PEMF exposure group was obviously lower (SMD, -0.67; 95% CI: -1.12 to -0.22). The subgroup meta-analysis results showed that PEMF significantly reduced epithelial cancer cell viability (SMD, -0.58; 95% CI: -0.92 to -0.23) but had no influence on stromal tumor cell viability (SMD, -0.93; 95% CI: -0.21 to 0.15). Our study demonstrated that PEMF could inhibit tumor cell proliferation to some extent, but the risk of bias and high heterogeneity (I<sup>2</sup> > 75%) weakened the strength of the conclusions drawn from the analysis.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\"40 4\",\"pages\":\"467-474\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15368378.2021.1958341\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2021.1958341\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2021.1958341","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Effects of pulsed electromagnetic fields on tumor cell viability: a meta-analysis of in vitro randomized controlled experiments.
Malignant tumor treatment remains a big challenge till now, and expanding literature indicated that pulsed electromagnetic fields (PEMF) is promising in tumor treatment with the advantage of safety and being economical, but it is still controversial on whether PEMF could affect the tumor cell viability. Therefore, we conducted the meta-analysis to evaluate effects of PEMF on tumor cell viability. The PubMed, EMBASE, Web of Science, and Cochrane Library databases were searched for studies published up to February 2021. Studies on the direct effects of PEMF on tumor cell viability, determined using colorimetric analysis, were included. Two authors extracted the data and completed the quality assessment. A meta-analysis was performed to calculate the absorbance values and 95% confidence intervals (CIs) using random-effects models. Seven studies, including 32 randomized controlled experiments, were analyzed. Compared with the control group, tumor cell viability in the PEMF exposure group was obviously lower (SMD, -0.67; 95% CI: -1.12 to -0.22). The subgroup meta-analysis results showed that PEMF significantly reduced epithelial cancer cell viability (SMD, -0.58; 95% CI: -0.92 to -0.23) but had no influence on stromal tumor cell viability (SMD, -0.93; 95% CI: -0.21 to 0.15). Our study demonstrated that PEMF could inhibit tumor cell proliferation to some extent, but the risk of bias and high heterogeneity (I2 > 75%) weakened the strength of the conclusions drawn from the analysis.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.