{"title":"Coati optimization algorithm for brain tumor identification based on MRI with utilizing phase-aware composite deep neural network.","authors":"Rajesh Kumar Thangavel, Antony Allwyn Sundarraj, Jayabrabu Ramakrishnan, Krishnasamy Balasubramanian","doi":"10.1080/15368378.2024.2401540","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumors can cause difficulties in normal brain function and are capable of developing in various regions of the brain. Malignant tumours can develop quickly, pass through neighboring tissues, and extend to further brain regions or the central nervous system. In contrast, healthy tumors typically develop slowly and do not invade surrounding tissues. Individuals frequently struggle with sensory abnormalities, motor deficiencies affecting coordination, and cognitive impairments affecting memory and focus. In this research, Utilizing Phase-aware Composite Deep Neural Network Optimized with Coati Optimized Algorithm for Brain Tumor Identification Based on Magnetic resonance imaging (PACDNN-COA-BTI-MRI) is proposed. First, input images are taken from the brain tumour Dataset. To execute this, the input image is pre-processed using Multivariate Fast Iterative Filtering (MFIF) and it reduces the occurrence of over-fitting from the collected dataset; then feature extraction using Self-Supervised Nonlinear Transform (SSNT) to extract essential features like model, shape, and intensity. Then, the proposed PACDNN-COA-BTI-MRI is implemented in Matlab and the performance metrics Recall, Accuracy, F1-Score, Precision Specificity and ROC are analysed. Performance of the PACDNN-COA-BTI-MRI approach attains 16.7%, 20.6% and 30.5% higher accuracy; 19.9%, 22.2% and 30.1% higher recall and 16.7%, 21.9% and 30.8% higher precision when analysed through existing techniques brain tumor identification using MRI-Based Deep Learning Approach for Efficient Classification of Brain Tumor (MRI-DLA-ECBT), MRI-Based Brain Tumor Detection using Convolutional Deep Learning Methods and Chosen Machine Learning Techniques (MRI-BTD-CDMLT) and MRI-Based Brain Tumor Image Detection using CNN-Based Deep Learning Method (MRI-BTID-CNN) methods, respectively.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"1-18"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2401540","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Brain tumors can cause difficulties in normal brain function and are capable of developing in various regions of the brain. Malignant tumours can develop quickly, pass through neighboring tissues, and extend to further brain regions or the central nervous system. In contrast, healthy tumors typically develop slowly and do not invade surrounding tissues. Individuals frequently struggle with sensory abnormalities, motor deficiencies affecting coordination, and cognitive impairments affecting memory and focus. In this research, Utilizing Phase-aware Composite Deep Neural Network Optimized with Coati Optimized Algorithm for Brain Tumor Identification Based on Magnetic resonance imaging (PACDNN-COA-BTI-MRI) is proposed. First, input images are taken from the brain tumour Dataset. To execute this, the input image is pre-processed using Multivariate Fast Iterative Filtering (MFIF) and it reduces the occurrence of over-fitting from the collected dataset; then feature extraction using Self-Supervised Nonlinear Transform (SSNT) to extract essential features like model, shape, and intensity. Then, the proposed PACDNN-COA-BTI-MRI is implemented in Matlab and the performance metrics Recall, Accuracy, F1-Score, Precision Specificity and ROC are analysed. Performance of the PACDNN-COA-BTI-MRI approach attains 16.7%, 20.6% and 30.5% higher accuracy; 19.9%, 22.2% and 30.1% higher recall and 16.7%, 21.9% and 30.8% higher precision when analysed through existing techniques brain tumor identification using MRI-Based Deep Learning Approach for Efficient Classification of Brain Tumor (MRI-DLA-ECBT), MRI-Based Brain Tumor Detection using Convolutional Deep Learning Methods and Chosen Machine Learning Techniques (MRI-BTD-CDMLT) and MRI-Based Brain Tumor Image Detection using CNN-Based Deep Learning Method (MRI-BTID-CNN) methods, respectively.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.