使用反向传播Levenberg-Marquardt技术的电磁三杂交careau纳米流体的肠流动:血细胞中的熵生成分析。

IF 1.5 4区 生物学 Q3 BIOLOGY
Electromagnetic Biology and Medicine Pub Date : 2025-01-01 Epub Date: 2025-02-27 DOI:10.1080/15368378.2025.2469699
Arshad Riaz, Muhammad Naeem Aslam, Mahreen Ali Awan, Muhammad Waheed Aslam, Sami Ullah Khan, Safia Akram, Emad E Mahmoud
{"title":"使用反向传播Levenberg-Marquardt技术的电磁三杂交careau纳米流体的肠流动:血细胞中的熵生成分析。","authors":"Arshad Riaz, Muhammad Naeem Aslam, Mahreen Ali Awan, Muhammad Waheed Aslam, Sami Ullah Khan, Safia Akram, Emad E Mahmoud","doi":"10.1080/15368378.2025.2469699","DOIUrl":null,"url":null,"abstract":"<p><p>The present research concentrates on examining entropy generation during the flow phenomenon of a three-dimensional peristaltic motion of a magnetized tri-hybrid nanofluid within a curved rectangular duct using a machine learning technique called backpropagated Levenberg-Marquardt (BLMT). The Carreau constitutive model is used for base liquid (blood). To obtain the most accurate solutions for the governing equations, an analytical tool called the Homotopy Perturbation Method (HPM) is utilized along with a machine learning methodology ANN-BLMT method on MatLab. The data of HPM and machine learning are also compared to assess how the framework of partial differential equations (PDEs) occurring in the problem can be improved. It shows the highest correlations between output and prediction of ANN-BLMT method. The convergence analysis reveals that for two scenarios, velocity exhibits the best validation performance values around <math><mn>7.3117</mn><mo>×</mo><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></math> and <math><mn>1.0082</mn><mo>×</mo><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mrow></math>. A detailed comparison between blood and nanofluid has been presented graphically to enhance the benefits of ternary hybrid nanoparticles in a simple base fluid. It is also found that the velocity of the blood can be slowed by the curvature increase and because of the increment of tri-hybrid nanoparticles in pure blood. It is also noted that the rate of heat transfer for ternary hybrid nanofluids is greater than that of a simple blood. Research findings have obvious implications for comprehending and enhancing peristaltic dynamics in biological processes such as the intestinal tract.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"193-211"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peristaltic flow of electromagnetic tri-hybrid Carreau nanofluid using backpropagated Levenberg-Marquardt technique: an entropy generation analysis in blood cells.\",\"authors\":\"Arshad Riaz, Muhammad Naeem Aslam, Mahreen Ali Awan, Muhammad Waheed Aslam, Sami Ullah Khan, Safia Akram, Emad E Mahmoud\",\"doi\":\"10.1080/15368378.2025.2469699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present research concentrates on examining entropy generation during the flow phenomenon of a three-dimensional peristaltic motion of a magnetized tri-hybrid nanofluid within a curved rectangular duct using a machine learning technique called backpropagated Levenberg-Marquardt (BLMT). The Carreau constitutive model is used for base liquid (blood). To obtain the most accurate solutions for the governing equations, an analytical tool called the Homotopy Perturbation Method (HPM) is utilized along with a machine learning methodology ANN-BLMT method on MatLab. The data of HPM and machine learning are also compared to assess how the framework of partial differential equations (PDEs) occurring in the problem can be improved. It shows the highest correlations between output and prediction of ANN-BLMT method. The convergence analysis reveals that for two scenarios, velocity exhibits the best validation performance values around <math><mn>7.3117</mn><mo>×</mo><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup></mrow></math> and <math><mn>1.0082</mn><mo>×</mo><mrow><msup><mn>10</mn><mrow><mo>-</mo><mn>10</mn></mrow></msup></mrow></math>. A detailed comparison between blood and nanofluid has been presented graphically to enhance the benefits of ternary hybrid nanoparticles in a simple base fluid. It is also found that the velocity of the blood can be slowed by the curvature increase and because of the increment of tri-hybrid nanoparticles in pure blood. It is also noted that the rate of heat transfer for ternary hybrid nanofluids is greater than that of a simple blood. Research findings have obvious implications for comprehending and enhancing peristaltic dynamics in biological processes such as the intestinal tract.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"193-211\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2025.2469699\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2025.2469699","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前的研究集中于利用一种称为反向传播Levenberg-Marquardt (BLMT)的机器学习技术,研究磁化三混合纳米流体在弯曲矩形管道内三维流动运动过程中的熵产生。基础液体(血液)采用carcarau本构模型。为了获得控制方程的最精确解,利用了一种称为同伦摄动法(HPM)的分析工具以及MatLab上的机器学习方法ANN-BLMT方法。还比较了HPM和机器学习的数据,以评估如何改进问题中出现的偏微分方程(PDEs)框架。结果表明,ANN-BLMT方法的输出结果与预测结果具有较高的相关性。收敛分析表明,对于两种场景,velocity在7.3117×10-11和1.0082×10-10附近显示出最佳的验证性能值。血液和纳米流体之间的详细比较已以图形形式呈现,以增强三元混合纳米颗粒在简单基础流体中的优势。研究还发现,由于曲率的增加和纯血液中三杂化纳米粒子的增加,血液的速度可以减慢。还注意到,三元混合纳米流体的传热速率大于单纯血液的传热速率。研究结果对理解和加强肠道等生物过程的蠕动动力学具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peristaltic flow of electromagnetic tri-hybrid Carreau nanofluid using backpropagated Levenberg-Marquardt technique: an entropy generation analysis in blood cells.

The present research concentrates on examining entropy generation during the flow phenomenon of a three-dimensional peristaltic motion of a magnetized tri-hybrid nanofluid within a curved rectangular duct using a machine learning technique called backpropagated Levenberg-Marquardt (BLMT). The Carreau constitutive model is used for base liquid (blood). To obtain the most accurate solutions for the governing equations, an analytical tool called the Homotopy Perturbation Method (HPM) is utilized along with a machine learning methodology ANN-BLMT method on MatLab. The data of HPM and machine learning are also compared to assess how the framework of partial differential equations (PDEs) occurring in the problem can be improved. It shows the highest correlations between output and prediction of ANN-BLMT method. The convergence analysis reveals that for two scenarios, velocity exhibits the best validation performance values around 7.3117×10-11 and 1.0082×10-10. A detailed comparison between blood and nanofluid has been presented graphically to enhance the benefits of ternary hybrid nanoparticles in a simple base fluid. It is also found that the velocity of the blood can be slowed by the curvature increase and because of the increment of tri-hybrid nanoparticles in pure blood. It is also noted that the rate of heat transfer for ternary hybrid nanofluids is greater than that of a simple blood. Research findings have obvious implications for comprehending and enhancing peristaltic dynamics in biological processes such as the intestinal tract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
11.80%
发文量
33
审稿时长
>12 weeks
期刊介绍: Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信