Lijiao Jiao, Tao Zhang, Peng Gao, Chao Zhou, Xiang Mei, Wenjuan Zhang, Yonghui Lu, Lei Zhang, Zhou Zhou, Zhengping Yu, Mindi He
{"title":"Exploring and validating heating dynamics in a radio-frequency electromagnetic field-based resonant chamber for mouse hyperthermia research.","authors":"Lijiao Jiao, Tao Zhang, Peng Gao, Chao Zhou, Xiang Mei, Wenjuan Zhang, Yonghui Lu, Lei Zhang, Zhou Zhou, Zhengping Yu, Mindi He","doi":"10.1080/15368378.2024.2361873","DOIUrl":"10.1080/15368378.2024.2361873","url":null,"abstract":"<p><p>Mild whole-body hyperthermia has been shown to have anti-tumor effects through an immune-modulating mechanism. Before it is widely applied in the clinic, tremendous mechanistic research in animals is necessary to adhere to evidence-based principles. The radio frequency electromagnetic field (RF-EMF) based heating facility could be a good choice for hyperthermia treatment, but the heating characteristics of a facility, including structure design, electromagnetic and thermal dosimetry, and the biologic effects of hyperthermia, need to be well elucidated. Here, we reported the heating characteristic study on a resonant chamber (RC) excited by a 1800 MHz solid source. The EMF in the RC was stirred by 24 static reflectors, which resulted in the standard deviation of electric field intensity being below 3 dB in the EM homogeneity evaluation. For the exposure scenario, six free-moving mice were loaded into separate cases and exposed simultaneously in the RC. The EMF energy absorption and distribution in exposed mice were calculated with the 12-plane-waves method of numerical simulation. Different levels of core body temperature increment in exposed mice were achieved through regulation of the source output power. Overexpression of heat shock proteins (HSPs) was detected in the liver, lung and muscle, but not in the brain of the exposed mice. The levels of representative inflammatory cytokines in the serum, TNF-α and IL-10 increased post RC exposure. Based on the heating characteristic study and validation, the applied RC would be a qualified heating system for mild whole-body hyperthermia effect research in mice.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"164-175"},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omar Bougandoura, Yahia Achour, Abdelhalim Zaoui, Jacek Starzyński
{"title":"Characterizing parameters and incorporating action potentials via the Hodgkin-Huxley model in a novel electric model for living cells.","authors":"Omar Bougandoura, Yahia Achour, Abdelhalim Zaoui, Jacek Starzyński","doi":"10.1080/15368378.2024.2372107","DOIUrl":"https://doi.org/10.1080/15368378.2024.2372107","url":null,"abstract":"<p><p>To enhance our understanding of electroporation and optimize the pulses used within the frequency range of 1 kHz to 100 MHz, with the aim of minimizing side effects such as muscle contraction, we introduce a novel electrical model, structured as a 2D representation employing exclusively lumped elements. This model adeptly encapsulates the intricate dynamics of living cells' impedance variation. A distinguishing attribute of the proposed model lies in its capacity to decipher the distribution of transmembrane potential across various orientations within living cells. This aspect bears critical importance, particularly in contexts such as electroporation and cellular stimulation, where precise knowledge of potential gradients is pivotal. Furthermore, the augmentation of the proposed electrical model with the Hodgkin-Huxley (HH) model introduces an additional dimension. This integration augments the model's capabilities, specifically enabling the exploration of muscle cell stimulation and the generation of action potentials. This broader scope enhances the model's utility, facilitating comprehensive investigations into intricate cellular behaviors under the influence of external electric fields.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"43 3","pages":"187-203"},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study for in vitro prostate cancer treatment with microwave ablation and pulsed electromagnetic field.","authors":"Caner Murat, Adnan Kaya, Dilek Kaya, Mumin Alper Erdoğan","doi":"10.1080/15368378.2024.2345606","DOIUrl":"10.1080/15368378.2024.2345606","url":null,"abstract":"<p><p>This paper presents the findings of a comprehensive study exploring the synergistic effects arising from the combination of microwave ablation and pulsed electromagnetic field (PEMF) therapy on prostate cancer cells. The research encompassed five distinct experimental groups, with continuous electric field measurements conducted during the entire treatment process. Group 1 and Group 2, subjected to microwave power below 350 W, exhibited specific electric field values of 72,800 V/m and 56,600 V/m, respectively. In contrast, Group 3 and Group 4, exposed to 80 W microwave power, displayed electric field levels of approximately 1450 V/m, while remaining free from any observable electrical discharges. The migratory and invasive capacities of PC3 cells were assessed through a scratch test in all groups. Notably, cells in Group 3 and Group 4, subjected to the combined treatment of microwave ablation and PEMF, demonstrated significantly accelerated migration in comparison to those in Groups 1 and 2. Additionally, Group 5 cells, receiving PEMF treatment in isolation, exhibited decreased migratory ability. These results strongly suggest that the combined approach of microwave ablation and PEMF holds promise as a potential therapeutic intervention for prostate cancer, as it effectively reduced cell viability, induced apoptosis, and impeded migration ability in PC3 cells. Moreover, the isolated use of PEMF demonstrated potential in limiting migratory capacity, which could hold critical implications in the fight against cancer metastasis.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"135-144"},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of non-ionizing radio frequency electromagnetic radiation on the development and behavior of early embryos of <i>Danio rerio</i>.","authors":"Rifat Khira, Gowri K Uggini","doi":"10.1080/15368378.2024.2352429","DOIUrl":"10.1080/15368378.2024.2352429","url":null,"abstract":"<p><p>Biological effects of radio frequency electromagnetic radiation (RF-EMR) in the range of 900-1800 MHz emerging from the mobile phone were investigated and were found to influence the locomotor pattern when exposure was initiated from 1 hour post fertilization (hpf) in zebrafish embryos (ZE), <i>Danio rerio</i>. Mobile phones and other wireless devices offer tremendous advantages. However, on the flipside they are leading to an increased electromagnetic energy in the environment, an excess of which could be termed as electromagnetic pollution. Herein, we tried to understand the effects of RF-EMR emerging from the mobile phone, on the development and behavior of ZE, exposed to RF-EMR (specific absorption rate of 1.13 W/kg and 1800 MHz frequency) 1 hr daily, for 5 days. To understand if there could be any developmental stage-specific vulnerability to RF-EMR, the exposure was initiated at three different time points: 1hpf, 6hpf and 24hpf of ZE development. Observations revealed no significant changes in the survival rate, morphology, oxidative stress or cortisol levels. However, statistically significant variations were observed in the batch where exposure started at 1hpf, with respect to locomotion patterns (distance travelled: 659.1 ± 173.1 mm Vs 963.5 ± 200.4 mm), which could be correlated to anxiety-like behavior; along with a corresponding increase in yolk consumption (yolk sac area: 0.251 ± 0.019 mm<sup>2</sup> Vs 0.225 ± 0.018 mm<sup>2</sup>). Therefore, we conclude that RF-EMR exposure influences the organism maximally during the earliest stage of development, and we also believe that an increase in the time of exposure (corresponding to the patterns of current usage of mobile phones) might reveal added afflictions.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"156-163"},"PeriodicalIF":1.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric and magnetic field pollution in near substations and investigation of anxiety and depressive effects on adult individuals living in this area","authors":"Cemil Sert, Nurdagül Başak, İbrahim Koruk","doi":"10.1080/15368378.2024.2348574","DOIUrl":"https://doi.org/10.1080/15368378.2024.2348574","url":null,"abstract":"Exposure to electromagnetic fields causes a variety of health problems in living systems. We investigated EMF pollution in Şanlıurfa city center and also investigated anxiety-depression symptoms in...","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":"89 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140828587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalai Selvi T, A Sumaiya Begum, P Poonkuzhali, R Aarthi
{"title":"Brain tumor classification for MRI images using dual-discriminator conditional generative adversarial network.","authors":"Kalai Selvi T, A Sumaiya Begum, P Poonkuzhali, R Aarthi","doi":"10.1080/15368378.2024.2321352","DOIUrl":"10.1080/15368378.2024.2321352","url":null,"abstract":"<p><p>This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. The proposed system is implemented in the MATLAB programming language. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The brain pictures are taken from Brats MRI image dataset. The images are preprocessed using Structural interval gradient filtering to remove noises and improve the quality of the image. The preprocessing outcomes are given to feature extraction. The features are extracted by Empirical wavelet transform (EWT) and the extracted features are given to the Dual-discriminator conditional generative adversarial network (DDCGAN) for recognizing the brain tumor, which classifies the brain images into glioma, meningioma, pituitary gland, and normal. Then, the weight parameter of DDCGAN is optimized by utilizing Border Collie Optimization (BCO), which is a met a heuristic approach to handle the real world optimization issues. It maximizes the detection accurateness and reduced computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"81-94"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafa Emre, Yasin Karamazi, Toygar Emre, Çağrı Avci, Cagatay Aydin, Sonia Ebrahimi, Ayper Boga Pekmezekmek
{"title":"The effect of 6GHz radiofrequency electromagnetic radiation on rat pain perception.","authors":"Mustafa Emre, Yasin Karamazi, Toygar Emre, Çağrı Avci, Cagatay Aydin, Sonia Ebrahimi, Ayper Boga Pekmezekmek","doi":"10.1080/15368378.2024.2331134","DOIUrl":"10.1080/15368378.2024.2331134","url":null,"abstract":"<p><p>This paper presents data on pain perception in rats exposed to 6 GHz radiofrequency electromagnetic radiation (RF-EMR). Rats were divided into two groups: control (<i>n</i> = 10, 4 replicates per test) and RF-EMR exposed group (<i>n</i> = 10, 4 replicates per test). Nociceptive responses of the groups were measured using rodent analgesiometry. Rats were divided into control and RF-EMR exposed groups. Nociceptive responses were measured using rodent analgesiometry. RF-EMR exposed rats had a 15% delay in responding to hot plate thermal stimulation compared to unexposed rats. The delay in responding to radiant heat thermal stimulation was 21%. We determined that RF-EMR promoted the occurrence of pressure pain as statistical significance by + 42% (<i>p</i> < 0.001). We observed that RF-EMR exposure increased nociceptive pain by + 35% by promoting cold plate stimulation (<i>p</i> < 0.05). RF-EMR exposure did not affect thermal preference as statistical significance but did support the formation of pressure pain perception.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"117-124"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140195006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yurou Liang, Ping Duan, Jiajia Liu, Mingguo Wang, Jie Zhang
{"title":"Study on the space field reconstruction method of the radial basis function of electromagnetic radiation under optimal parameters.","authors":"Yurou Liang, Ping Duan, Jiajia Liu, Mingguo Wang, Jie Zhang","doi":"10.1080/15368378.2024.2308118","DOIUrl":"10.1080/15368378.2024.2308118","url":null,"abstract":"<p><p>Electromagnetic radiation (EM) pollution has a certain impact on human life and health, and the reconstruction of the EM space field in this paper is of great practical significance for EM analysis and research. The radial basis function (RBF) sufficiently considers the influence of each sampling point and is more suitable for reconstructing the EM space field than other spatial interpolation methods. Currently, when RBF is used to reconstruct the EM space field, the optimal determination of the basis function and shape parameter (SP) is rarely considered. This ultimately leads to low reconstruction accuracy of the EM space field. Therefore, in this paper, the particle swarm optimization (PSO) is used to calculate the optimal SP of the RBF. On this basis, reliable EM space field reconstruction is performed, which helps people understand the EM distribution characteristics in actual situations from a visual perspective. The EM sampling data of a region on the Yunnan Normal University campus are used as the data source, and the RBF under the optimal parameters is used for EM reconstruction. The accuracy of its interpolation results is evaluated and compared and analyzed with inverse distance weighting (IDW) after distance index optimization. The results show that the RBF under optimal parameters reconstructs the EM space field with high accuracy and good effect, which can truly reflect the actual distribution of EM.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"19-30"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting.","authors":"Marziye Rabiei, Seyed Jalil Masoumi, Masoud Haghani, Samaneh Nematolahi, Reza Rabiei, Seyed Mohammad Javad Mortazavi","doi":"10.1080/15368378.2024.2327432","DOIUrl":"10.1080/15368378.2024.2327432","url":null,"abstract":"<p><p>Exposure to blue light at bedtime, suppresses melatonin secretion, postponing the sleep onset and interrupting the sleep process. Some smartphone manufacturers have introduced night-mode functions, which have been claimed to aid in improving sleep quality. In this study, we evaluate the impact of blue light filter application on decreasing blue light emissions and improving sleep quality. Participants in this study recorded the pattern of using their mobile phones through a questionnaire. In order to evaluate sleep quality, we used a PSQI questionnaire. Blue light filters were used by 9.7% of respondents, 9.7% occasionally, and 80% never. The mean score of PSQI was more than 5 in 54.10% of the participants and less than 5 in 45.90%. ANOVA test was performed to assess the relationship between using blue light filter applications and sleep quality (p-value = 0.925). The findings of this study indicate a connection between the use of blue light filter apps and habitual sleep efficiency in the 31-40 age group. However, our results align only to some extent with prior research, as we did not observe sustained positive effects on all parameters of sleep quality from the long-term use of blue light filtering apps. Several studies have found that blue light exposure can suppress melatonin secretion, exacerbating sleep problems. Some studies have reported that physical blue light filters, such as lenses, can affect melatonin secretion and improve sleep quality. However, the impact of blue light filtering applications remains unclear and debatable.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"107-116"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140094984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Hassan Kalantar, Parvin-Dokht Bayat, Sahar Ghaffari Khaligh, Homa Soleimani
{"title":"The role of curcumin during pregnancy on the exposed fetuses' tissues of Wistar rats to electromagnetic field.","authors":"Mohammad Hassan Kalantar, Parvin-Dokht Bayat, Sahar Ghaffari Khaligh, Homa Soleimani","doi":"10.1080/15368378.2024.2315214","DOIUrl":"10.1080/15368378.2024.2315214","url":null,"abstract":"<p><p>To investigate curcumin (CUR) as the protector against the harmful effects of low-frequency electromagnetic field(LF- EMF, 50 Hz) during pregnancy period, 5 males and 15 females of Wistar rat mated and vaginal plaques were observed. Then, the pregnant rats were divided into six groups. During pregnancy(21 days), the EMF group was exposed to EMF for 30 min/day, the CUR group received a single dose of 50 mg/kg/daily CUR intraperitoneal, the EMF+CUR group was injected CUR and exposed to EMF daily. The DMSO(dimethyl sulfoxide) group was injected solvent of CUR (DMSO) intraperitoneal with the same volume of CUR solvent, the sham group was placed through the solenoid in the same conditions as the first group without exposure and the control group was kept in their cage in normal condition. After four weeks, babies born were divided according to the mother groups and sacrificed. Then, the three tissues injuries were investigated. EMF exposure led to an increase in outstanding necrotic areas in hippocampal tissue, an increase in the amount of hyperemia(<i>p</i> = 0.017) and necrotic(<i>p</i> = 0.005) in kidneys, and degeneration in liver tissue(<i>p</i> = 0.007) in the EMF group compared with EMF+CUR groups. A single dose of CUR daily during pregnancy can protect these tissues from injuries caused by LF-EMF exposure in rat fetuses.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"71-80"},"PeriodicalIF":1.7,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}