Design and performance evaluation of magnetic hyperthermia instrument with embedded PI control.

IF 1.5 4区 生物学 Q3 BIOLOGY
Mou Chatterjee, Sandip Pal
{"title":"Design and performance evaluation of magnetic hyperthermia instrument with embedded PI control.","authors":"Mou Chatterjee, Sandip Pal","doi":"10.1080/15368378.2025.2524547","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperthermia is a non-invasive localized heating technique that has proven to be an efficient cancer treatment method. Hyperthermia therapy needs precise temperature control to ensure delivery of the proper thermal dose, causing minimum damage to the neighboring healthy tissues. This work reports the indigenous development of a custom-designed hyperthermia instrument. An advanced RISC machine (ARM)-based embedded closed-loop proportional-integral (PI) controller is developed for controlling the temperature. As per the applied methodology, the DC bias of a Mazzilli oscillator-based half-bridge inverter is controlled through the controller. The PI controller reads the hyperthermia system temperature using an infrared (IR) radiation thermometer and generates an analog output accordingly. This, in turn, changes the amplitude of the alternating magnetic field (AMF), thus controlling the temperature of the magnetic nanoparticles (MNPs). Its potential has been explored for <i>in vitro</i> hyperthermia studies. <i>In vitro</i> experiments have been carried out successfully with the custom-designed heater and controller assembly utilizing commercial non-invasive temperature measurement with a standard deviation of about 0.3°C and overshoot within the hyperthermia temperature range (3°C). The developed system has also obtained a satisfactory value of specific absorption rate (SAR). This paper infers the feasibility of the indigenously developed circuit and the related controller for hyperthermia therapy and preclinical studies. This system can be used for clinical applications with suitable customizations.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"1-15"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2025.2524547","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperthermia is a non-invasive localized heating technique that has proven to be an efficient cancer treatment method. Hyperthermia therapy needs precise temperature control to ensure delivery of the proper thermal dose, causing minimum damage to the neighboring healthy tissues. This work reports the indigenous development of a custom-designed hyperthermia instrument. An advanced RISC machine (ARM)-based embedded closed-loop proportional-integral (PI) controller is developed for controlling the temperature. As per the applied methodology, the DC bias of a Mazzilli oscillator-based half-bridge inverter is controlled through the controller. The PI controller reads the hyperthermia system temperature using an infrared (IR) radiation thermometer and generates an analog output accordingly. This, in turn, changes the amplitude of the alternating magnetic field (AMF), thus controlling the temperature of the magnetic nanoparticles (MNPs). Its potential has been explored for in vitro hyperthermia studies. In vitro experiments have been carried out successfully with the custom-designed heater and controller assembly utilizing commercial non-invasive temperature measurement with a standard deviation of about 0.3°C and overshoot within the hyperthermia temperature range (3°C). The developed system has also obtained a satisfactory value of specific absorption rate (SAR). This paper infers the feasibility of the indigenously developed circuit and the related controller for hyperthermia therapy and preclinical studies. This system can be used for clinical applications with suitable customizations.

嵌入式PI控制磁热疗仪的设计与性能评价。
热疗是一种非侵入性局部加热技术,已被证明是一种有效的癌症治疗方法。热疗需要精确的温度控制,以确保提供适当的热剂量,对邻近健康组织造成最小的损伤。这项工作报告了一种定制设计的热疗仪器的本土发展。开发了一种先进的基于ARM的嵌入式闭环比例积分(PI)控制器,用于温度控制。根据应用方法,通过控制器控制基于Mazzilli振荡器的半桥逆变器的直流偏置。PI控制器使用红外(IR)辐射温度计读取热疗系统温度,并相应地产生模拟输出。这反过来又改变了交变磁场(AMF)的振幅,从而控制了磁性纳米颗粒(MNPs)的温度。它在体外热疗研究中的潜力已被探索。使用定制设计的加热器和控制器组件成功地进行了体外实验,使用商业非侵入性温度测量,标准偏差约为0.3°C,并在热疗温度范围(3°C)内超调。该体系也获得了令人满意的比吸收率(SAR)值。本文推断了自主开发的电路及相关控制器用于热疗及临床前研究的可行性。该系统可用于临床应用与适当的定制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
11.80%
发文量
33
审稿时长
>12 weeks
期刊介绍: Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信