Journal d'Analyse Mathématique最新文献

筛选
英文 中文
Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2 具有指数临界增长ℝ2 的磁性非线性薛定谔方程的半经典状态
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0312-1
Pietro d’Avenia, Chao Ji
{"title":"Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2","authors":"Pietro d’Avenia, Chao Ji","doi":"10.1007/s11854-023-0312-1","DOIUrl":"https://doi.org/10.1007/s11854-023-0312-1","url":null,"abstract":"<p>This paper is devoted to the magnetic nonlinear Schrödinger equation </p><span>$${left( {{varepsilon over i}nabla - A(x)} right)^2}u + V(x)u = f(|u{|^2})u,,{rm{in}},,{mathbb{R}^2},$$</span><p> where <i>ε</i> &gt; 0 is a parameter, <i>V</i>: ℝ<sup>2</sup> → ℝ and <i>A</i>: ℝ<sup>2</sup> → ℝ<sup>2</sup> are continuous functions and <i>f</i>: ℝ → ℝ is a <i>C</i><sup>1</sup> function having exponential critical growth. Under a global assumption on the potential <i>V</i>, we use variational methods and Ljusternick–Schnirelmann theory to prove existence, multiplicity, concentration, and decay of nontrivial solutions for <i>ε</i> &gt; 0 small.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillatory integral operators with homogeneous phase functions 具有同相函数的振荡积分算子
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0320-1
{"title":"Oscillatory integral operators with homogeneous phase functions","authors":"","doi":"10.1007/s11854-023-0320-1","DOIUrl":"https://doi.org/10.1007/s11854-023-0320-1","url":null,"abstract":"<h3>Abstract</h3> <p>Oscillatory integral operators with 1-homogeneous phase functions satisfying a convexity condition are considered. For these we show the <em>L</em><sup><em>p</em></sup>–<em>L</em><sup><em>p</em></sup>-estimates for the Fourier extension operator of the cone due to Ou–Wang via polynomial partitioning. For this purpose, we combine the arguments of Ou–Wang with the analysis of Guth–Hickman–Iliopoulou, who previously showed sharp <em>L</em><sup><em>p</em></sup>–<em>L</em><sup><em>p</em></sup>-estimates for non-homogeneous phase functions with variable coefficients under a convexity assumption. Furthermore, we provide examples exhibiting Kakeya compression, which shows a more restrictive range than dictated by the Knapp example in higher dimensions. We apply the oscillatory integral estimates to show new local smoothing estimates for wave equations on compact Riemannian manifolds (<em>M, g</em>) with dim <em>M</em> ≥ 3. This generalizes the argument for the Euclidean wave equation due to Gao–Liu–Miao–Xi.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S1-bounded Fourier multipliers on H1(ℝ) and functional calculus for semigroups H1(ℝ) 上的 S1 有界傅里叶乘数和半群的函数微积分
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0317-9
{"title":"S1-bounded Fourier multipliers on H1(ℝ) and functional calculus for semigroups","authors":"","doi":"10.1007/s11854-023-0317-9","DOIUrl":"https://doi.org/10.1007/s11854-023-0317-9","url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>T</em>: <em>H</em><sup>1</sup>(ℝ) → <em>H</em><sup>1</sup>(ℝ) be a bounded Fourier multiplier on the analytic Hardy space <em>H</em><sup>1</sup>(ℝ) ⊂ <em>L</em><sup>1</sup>(ℝ) and let <em>m</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>) be its symbol, that is, <span> <span>(widehat {T(h)} = mhat h)</span> </span> for all <em>h</em> ∈ <em>H</em><sup>1</sup>(ℝ). Let <em>S</em><sup>1</sup> be the Banach space of all trace class operators on <em>ℓ</em><sup>2</sup>. We show that <em>T</em> admits a bounded tensor extension <span> <span>(Toverline otimes {I_{{S_1}}}:{H^1}(mathbb{R};{S^1}) to {H^1}(mathbb{R};{S^1}))</span> </span> if and only if there exist a Hilbert space ℌ and two functions <em>α</em>, <em>β</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>: ℌ) such that <em>m</em>(<em>s</em>+<em>t</em>) = 〈<em>α</em>(<em>t</em>), <em>β</em>(<em>s</em>)〉<sub>ℌ</sub> for almost every (<em>s, t</em>) ∈ ℝ<span> <sub>+</sub> <sup>2</sup> </span>. Such Fourier multipliers are called <em>S</em><sup>1</sup>-bounded and we let <span> <span>({{cal M}_{{S^1}}}({H^1}(mathbb{R})))</span> </span> denote the Banach space of all <em>S</em><sup>1</sup>-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra <span> <span>({{cal A}_{0,{S^1}}}({mathbb{C}_ +}))</span> </span> of bounded analytic functions on ℂ<sub>+</sub> = {<em>z</em> ∈ ℂ:Re(<em>z</em>) &gt; 0} and show that its dual space coincides with <span> <span>({{cal M}_{{S^1}}}({H^1}(mathbb{R})))</span> </span>. Second, given any bounded <em>C</em><sub>0</sub>-semigroup (<em>T</em><sub><em>t</em></sub>)<sub><em>t</em>≥0</sub> on Hilbert space, and any <em>b</em> ∈ <em>L</em><sup>1</sup>(ℝ<sub>+</sub>), we establish an estimate <span> <span>(||int_0^infty {b(t)} {T_t}dt||,, lesssim,,||{L_b}|{|_{{{cal A}_{0,{S^1}}}}})</span> </span>, where <em>L</em><sub><em>b</em></sub> denotes the Laplace transform of <em>b</em>. This improves previous functional calculus estimates recently obtained by the first two authors.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattering theory with unitary twists 具有单元扭曲的散射理论
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0313-0
Moritz Doll, Ksenia Fedosova, Anke Pohl
{"title":"Scattering theory with unitary twists","authors":"Moritz Doll, Ksenia Fedosova, Anke Pohl","doi":"10.1007/s11854-023-0313-0","DOIUrl":"https://doi.org/10.1007/s11854-023-0313-0","url":null,"abstract":"<p>We study the spectral properties of the Laplace operator associated to a hyperbolic surface in the presence of a unitary representation of the fundamental group. Following the approach by Guillopé and Zworski, we establish a factorization formula for the twisted scattering determinant and describe the behavior of the scattering matrix in a neighborhood of 1/2.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative behavior of unipotent flows and an effective avoidance principle 单能流的定量行为和有效规避原则
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0309-9
Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah
{"title":"Quantitative behavior of unipotent flows and an effective avoidance principle","authors":"Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah","doi":"10.1007/s11854-023-0309-9","DOIUrl":"https://doi.org/10.1007/s11854-023-0309-9","url":null,"abstract":"<p>We give an effective bound on how much time orbits of a unipotent group <i>U</i> on an arithmetic quotient <i>G</i>/Γ can stay near homogeneous subvarieties of <i>G</i>/Γ corresponding to ℚ-subgroups of <i>G</i>. In particular, we show that if such a <i>U</i>-orbit is moderately near a proper homogeneous subvariety of <i>G</i>/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.</p><p>Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotics for Christoffel functions associated to continuum Schrödinger operators 与连续薛定谔算子相关的 Christoffel 函数渐近论
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0319-7
Benjamin Eichinger
{"title":"Asymptotics for Christoffel functions associated to continuum Schrödinger operators","authors":"Benjamin Eichinger","doi":"10.1007/s11854-023-0319-7","DOIUrl":"https://doi.org/10.1007/s11854-023-0319-7","url":null,"abstract":"<p>We prove asymptotics of the Christoffel function, <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that <i>Lλ</i><sub><i>L</i></sub>(<i>ξ</i>) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), we compute universality limits for continuum Schrödinger operators at scale <i>L</i> and obtain clock spacing of the eigenvalues of the finite range truncations.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers 准线性方程的哈代权重空间:马兹亚型特征和存在最小值的充分条件
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0318-8
Ujjal Das, Yehuda Pinchover
{"title":"The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers","authors":"Ujjal Das, Yehuda Pinchover","doi":"10.1007/s11854-023-0318-8","DOIUrl":"https://doi.org/10.1007/s11854-023-0318-8","url":null,"abstract":"<p>Let <i>p</i> ∈ (1, ∞) and Ω ⊂ ℝ<sup><i>N</i></sup> be a domain. Let</p><span>$$A: = ({a_{ij}}) in L_{{rm{loc}}}^infty (Omega;{mathbb{R}^{N times N}})$$</span><p>be a symmetric and locally uniformly positive definite matrix. Set</p><span>$$|xi |_A^2:sumlimits_{i,j = 1}^N {{a_{ij}}(x){xi _i}{xi _j}},$$</span><p><i>ξ</i> ∈ ℝ<sup><i>N</i></sup>, and let <i>V</i> be a given potential in a certain local Morrey space. We assume that the energy functional</p><span>$${Q_{p,A,V}}(phi ): = int_Omega {[|nabla phi |_A^p + V|phi {|^p}]{rm{d}}x} $$</span><p>is nonnegative in <i>W</i><sup>1,<i>p</i></sup>(Ω) ∩ <i>C</i><sub><i>c</i></sub>(Ω).</p><p>We introduce a generalized notion of <i>Q</i><sub><i>p,A,V</i></sub>-capacity and characterize the space of all Hardy-weights for the functional <i>Q</i><sub><i>p,A,V</i></sub>, extending Maz’ya’s well known characterization of the space of Hardy-weights for the <i>p</i>-Laplacian. In addition, we provide various sufficient conditions on the potential <i>V</i> and the Hardy-weight <i>g</i> such that the best constant of the corresponding variational problem is attained in an appropriate Beppo Levi space.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasilinear elliptic equations involving measure valued absorption terms and measure data 涉及量值吸收项和量值数据的准线性椭圆方程
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0321-0
Konstantinos T. Gkikas
{"title":"Quasilinear elliptic equations involving measure valued absorption terms and measure data","authors":"Konstantinos T. Gkikas","doi":"10.1007/s11854-023-0321-0","DOIUrl":"https://doi.org/10.1007/s11854-023-0321-0","url":null,"abstract":"<p>Let 1 &lt; <i>p &lt; N</i> and Ω ⊂ ℝ<sup><i>N</i></sup> be an open bounded domain. We study the existence of solutions to equation <span>((E) - {Delta _p}u + g(u)sigma = mu )</span> in Ω, where <i>g</i> ∈ <i>C</i>(ℝ) is a nondecreasing function, <i>μ</i> is a bounded Radon measure on Ω and <i>σ</i> is a nonnegative Radon measure on ℝ<sup><i>N</i></sup>. We show that if <i>σ</i> belongs to some Morrey space of signed measures, then we may investigate the existence of solutions to equation (<i>E</i>) in the framework of renormalized solutions. Furthermore, imposing a subcritical integral condition on <i>g</i>, we prove that equation (<i>E</i>) admits a renormalized solution for any bounded Radon measure <i>μ</i>. When <span>(g(t) = |t{|^{q - 1}}t)</span> with <i>q &gt; p</i> − 1, we give various sufficient conditions for the existence of renormalized solutions to (<i>E</i>). These sufficient conditions are expressed in terms of Bessel capacities.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates 通过傅立叶扩展估计打破双谐波 NLS 地面态的对称性
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0311-2
Enno Lenzmann, Tobias Weth
{"title":"Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates","authors":"Enno Lenzmann, Tobias Weth","doi":"10.1007/s11854-023-0311-2","DOIUrl":"https://doi.org/10.1007/s11854-023-0311-2","url":null,"abstract":"<p>We consider ground state solutions <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) of biharmonic (fourth-order) nonlinear Schrödinger equations of the form </p><span>$${Delta ^2}u + 2aDelta u + bu - |u{|^{p - 2}}u = 0,,,,{rm{in}},,{mathbb{R}^N}$$</span><p> with positive constants <i>a, b</i> &gt; 0 and exponents 2 &lt; <i>p</i> &lt; 2*, where <span>({2^ * } = {{2N} over {N - 4}})</span> if <i>N</i> &gt; 4 and 2* = ∞ if <i>N</i> ≤ 4. By exploiting a connection to the adjoint Stein–Tomas inequality on the unit sphere and by using trial functions due to Knapp, we prove a general symmetry breaking result by showing that all ground states <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) in dimension <i>N</i> ≥ 2 fail to be radially symmetric for all exponents <span>(2 &lt; p &lt; {{2N + 2} over {N - 1}})</span> in a suitable regime of <i>a, b</i> &gt; 0.</p><p>As applications of our main result, we also prove symmetry breaking for a minimization problem with constrained <i>L</i><sup>2</sup>-mass and for a related problem on the unit ball in ℝ<sup><i>N</i></sup> subject to Dirichlet boundary conditions.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiclassical analysis of a nonlocal boundary value problem related to magnitude 与幅度有关的非局部边界值问题的半经典分析
Journal d'Analyse Mathématique Pub Date : 2023-12-12 DOI: 10.1007/s11854-023-0310-3
Heiko Gimperlein, Magnus Goffeng, Nikoletta Louca
{"title":"Semiclassical analysis of a nonlocal boundary value problem related to magnitude","authors":"Heiko Gimperlein, Magnus Goffeng, Nikoletta Louca","doi":"10.1007/s11854-023-0310-3","DOIUrl":"https://doi.org/10.1007/s11854-023-0310-3","url":null,"abstract":"<p>We study a Dirichlet boundary problem related to the fractional Laplacian in a manifold. Its variational formulation arises in the study of magnitude, an invariant of compact metric spaces given by the reciprocal of the ground state energy. Using recent techniques developed for pseudodifferential boundary problems we discuss the structure of the solution operator and resulting properties of the magnitude. In a semiclassical limit we obtain an asymptotic expansion of the magnitude in terms of curvature invariants of the manifold and the boundary, similar to the invariants arising in short-time expansions for heat kernels.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信