{"title":"Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2","authors":"Pietro d’Avenia, Chao Ji","doi":"10.1007/s11854-023-0312-1","DOIUrl":"https://doi.org/10.1007/s11854-023-0312-1","url":null,"abstract":"<p>This paper is devoted to the magnetic nonlinear Schrödinger equation </p><span>$${left( {{varepsilon over i}nabla - A(x)} right)^2}u + V(x)u = f(|u{|^2})u,,{rm{in}},,{mathbb{R}^2},$$</span><p> where <i>ε</i> > 0 is a parameter, <i>V</i>: ℝ<sup>2</sup> → ℝ and <i>A</i>: ℝ<sup>2</sup> → ℝ<sup>2</sup> are continuous functions and <i>f</i>: ℝ → ℝ is a <i>C</i><sup>1</sup> function having exponential critical growth. Under a global assumption on the potential <i>V</i>, we use variational methods and Ljusternick–Schnirelmann theory to prove existence, multiplicity, concentration, and decay of nontrivial solutions for <i>ε</i> > 0 small.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oscillatory integral operators with homogeneous phase functions","authors":"","doi":"10.1007/s11854-023-0320-1","DOIUrl":"https://doi.org/10.1007/s11854-023-0320-1","url":null,"abstract":"<h3>Abstract</h3> <p>Oscillatory integral operators with 1-homogeneous phase functions satisfying a convexity condition are considered. For these we show the <em>L</em><sup><em>p</em></sup>–<em>L</em><sup><em>p</em></sup>-estimates for the Fourier extension operator of the cone due to Ou–Wang via polynomial partitioning. For this purpose, we combine the arguments of Ou–Wang with the analysis of Guth–Hickman–Iliopoulou, who previously showed sharp <em>L</em><sup><em>p</em></sup>–<em>L</em><sup><em>p</em></sup>-estimates for non-homogeneous phase functions with variable coefficients under a convexity assumption. Furthermore, we provide examples exhibiting Kakeya compression, which shows a more restrictive range than dictated by the Knapp example in higher dimensions. We apply the oscillatory integral estimates to show new local smoothing estimates for wave equations on compact Riemannian manifolds (<em>M, g</em>) with dim <em>M</em> ≥ 3. This generalizes the argument for the Euclidean wave equation due to Gao–Liu–Miao–Xi.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139025387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"S1-bounded Fourier multipliers on H1(ℝ) and functional calculus for semigroups","authors":"","doi":"10.1007/s11854-023-0317-9","DOIUrl":"https://doi.org/10.1007/s11854-023-0317-9","url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>T</em>: <em>H</em><sup>1</sup>(ℝ) → <em>H</em><sup>1</sup>(ℝ) be a bounded Fourier multiplier on the analytic Hardy space <em>H</em><sup>1</sup>(ℝ) ⊂ <em>L</em><sup>1</sup>(ℝ) and let <em>m</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>) be its symbol, that is, <span> <span>(widehat {T(h)} = mhat h)</span> </span> for all <em>h</em> ∈ <em>H</em><sup>1</sup>(ℝ). Let <em>S</em><sup>1</sup> be the Banach space of all trace class operators on <em>ℓ</em><sup>2</sup>. We show that <em>T</em> admits a bounded tensor extension <span> <span>(Toverline otimes {I_{{S_1}}}:{H^1}(mathbb{R};{S^1}) to {H^1}(mathbb{R};{S^1}))</span> </span> if and only if there exist a Hilbert space ℌ and two functions <em>α</em>, <em>β</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>: ℌ) such that <em>m</em>(<em>s</em>+<em>t</em>) = 〈<em>α</em>(<em>t</em>), <em>β</em>(<em>s</em>)〉<sub>ℌ</sub> for almost every (<em>s, t</em>) ∈ ℝ<span> <sub>+</sub> <sup>2</sup> </span>. Such Fourier multipliers are called <em>S</em><sup>1</sup>-bounded and we let <span> <span>({{cal M}_{{S^1}}}({H^1}(mathbb{R})))</span> </span> denote the Banach space of all <em>S</em><sup>1</sup>-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra <span> <span>({{cal A}_{0,{S^1}}}({mathbb{C}_ +}))</span> </span> of bounded analytic functions on ℂ<sub>+</sub> = {<em>z</em> ∈ ℂ:Re(<em>z</em>) > 0} and show that its dual space coincides with <span> <span>({{cal M}_{{S^1}}}({H^1}(mathbb{R})))</span> </span>. Second, given any bounded <em>C</em><sub>0</sub>-semigroup (<em>T</em><sub><em>t</em></sub>)<sub><em>t</em>≥0</sub> on Hilbert space, and any <em>b</em> ∈ <em>L</em><sup>1</sup>(ℝ<sub>+</sub>), we establish an estimate <span> <span>(||int_0^infty {b(t)} {T_t}dt||,, lesssim,,||{L_b}|{|_{{{cal A}_{0,{S^1}}}}})</span> </span>, where <em>L</em><sub><em>b</em></sub> denotes the Laplace transform of <em>b</em>. This improves previous functional calculus estimates recently obtained by the first two authors.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scattering theory with unitary twists","authors":"Moritz Doll, Ksenia Fedosova, Anke Pohl","doi":"10.1007/s11854-023-0313-0","DOIUrl":"https://doi.org/10.1007/s11854-023-0313-0","url":null,"abstract":"<p>We study the spectral properties of the Laplace operator associated to a hyperbolic surface in the presence of a unitary representation of the fundamental group. Following the approach by Guillopé and Zworski, we establish a factorization formula for the twisted scattering determinant and describe the behavior of the scattering matrix in a neighborhood of 1/2.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah
{"title":"Quantitative behavior of unipotent flows and an effective avoidance principle","authors":"Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah","doi":"10.1007/s11854-023-0309-9","DOIUrl":"https://doi.org/10.1007/s11854-023-0309-9","url":null,"abstract":"<p>We give an effective bound on how much time orbits of a unipotent group <i>U</i> on an arithmetic quotient <i>G</i>/Γ can stay near homogeneous subvarieties of <i>G</i>/Γ corresponding to ℚ-subgroups of <i>G</i>. In particular, we show that if such a <i>U</i>-orbit is moderately near a proper homogeneous subvariety of <i>G</i>/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.</p><p>Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics for Christoffel functions associated to continuum Schrödinger operators","authors":"Benjamin Eichinger","doi":"10.1007/s11854-023-0319-7","DOIUrl":"https://doi.org/10.1007/s11854-023-0319-7","url":null,"abstract":"<p>We prove asymptotics of the Christoffel function, <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that <i>Lλ</i><sub><i>L</i></sub>(<i>ξ</i>) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), we compute universality limits for continuum Schrödinger operators at scale <i>L</i> and obtain clock spacing of the eigenvalues of the finite range truncations.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139023923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers","authors":"Ujjal Das, Yehuda Pinchover","doi":"10.1007/s11854-023-0318-8","DOIUrl":"https://doi.org/10.1007/s11854-023-0318-8","url":null,"abstract":"<p>Let <i>p</i> ∈ (1, ∞) and Ω ⊂ ℝ<sup><i>N</i></sup> be a domain. Let</p><span>$$A: = ({a_{ij}}) in L_{{rm{loc}}}^infty (Omega;{mathbb{R}^{N times N}})$$</span><p>be a symmetric and locally uniformly positive definite matrix. Set</p><span>$$|xi |_A^2:sumlimits_{i,j = 1}^N {{a_{ij}}(x){xi _i}{xi _j}},$$</span><p><i>ξ</i> ∈ ℝ<sup><i>N</i></sup>, and let <i>V</i> be a given potential in a certain local Morrey space. We assume that the energy functional</p><span>$${Q_{p,A,V}}(phi ): = int_Omega {[|nabla phi |_A^p + V|phi {|^p}]{rm{d}}x} $$</span><p>is nonnegative in <i>W</i><sup>1,<i>p</i></sup>(Ω) ∩ <i>C</i><sub><i>c</i></sub>(Ω).</p><p>We introduce a generalized notion of <i>Q</i><sub><i>p,A,V</i></sub>-capacity and characterize the space of all Hardy-weights for the functional <i>Q</i><sub><i>p,A,V</i></sub>, extending Maz’ya’s well known characterization of the space of Hardy-weights for the <i>p</i>-Laplacian. In addition, we provide various sufficient conditions on the potential <i>V</i> and the Hardy-weight <i>g</i> such that the best constant of the corresponding variational problem is attained in an appropriate Beppo Levi space.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasilinear elliptic equations involving measure valued absorption terms and measure data","authors":"Konstantinos T. Gkikas","doi":"10.1007/s11854-023-0321-0","DOIUrl":"https://doi.org/10.1007/s11854-023-0321-0","url":null,"abstract":"<p>Let 1 < <i>p < N</i> and Ω ⊂ ℝ<sup><i>N</i></sup> be an open bounded domain. We study the existence of solutions to equation <span>((E) - {Delta _p}u + g(u)sigma = mu )</span> in Ω, where <i>g</i> ∈ <i>C</i>(ℝ) is a nondecreasing function, <i>μ</i> is a bounded Radon measure on Ω and <i>σ</i> is a nonnegative Radon measure on ℝ<sup><i>N</i></sup>. We show that if <i>σ</i> belongs to some Morrey space of signed measures, then we may investigate the existence of solutions to equation (<i>E</i>) in the framework of renormalized solutions. Furthermore, imposing a subcritical integral condition on <i>g</i>, we prove that equation (<i>E</i>) admits a renormalized solution for any bounded Radon measure <i>μ</i>. When <span>(g(t) = |t{|^{q - 1}}t)</span> with <i>q > p</i> − 1, we give various sufficient conditions for the existence of renormalized solutions to (<i>E</i>). These sufficient conditions are expressed in terms of Bessel capacities.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"88 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139030288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates","authors":"Enno Lenzmann, Tobias Weth","doi":"10.1007/s11854-023-0311-2","DOIUrl":"https://doi.org/10.1007/s11854-023-0311-2","url":null,"abstract":"<p>We consider ground state solutions <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) of biharmonic (fourth-order) nonlinear Schrödinger equations of the form </p><span>$${Delta ^2}u + 2aDelta u + bu - |u{|^{p - 2}}u = 0,,,,{rm{in}},,{mathbb{R}^N}$$</span><p> with positive constants <i>a, b</i> > 0 and exponents 2 < <i>p</i> < 2*, where <span>({2^ * } = {{2N} over {N - 4}})</span> if <i>N</i> > 4 and 2* = ∞ if <i>N</i> ≤ 4. By exploiting a connection to the adjoint Stein–Tomas inequality on the unit sphere and by using trial functions due to Knapp, we prove a general symmetry breaking result by showing that all ground states <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) in dimension <i>N</i> ≥ 2 fail to be radially symmetric for all exponents <span>(2 < p < {{2N + 2} over {N - 1}})</span> in a suitable regime of <i>a, b</i> > 0.</p><p>As applications of our main result, we also prove symmetry breaking for a minimization problem with constrained <i>L</i><sup>2</sup>-mass and for a related problem on the unit ball in ℝ<sup><i>N</i></sup> subject to Dirichlet boundary conditions.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Semiclassical analysis of a nonlocal boundary value problem related to magnitude","authors":"Heiko Gimperlein, Magnus Goffeng, Nikoletta Louca","doi":"10.1007/s11854-023-0310-3","DOIUrl":"https://doi.org/10.1007/s11854-023-0310-3","url":null,"abstract":"<p>We study a Dirichlet boundary problem related to the fractional Laplacian in a manifold. Its variational formulation arises in the study of magnitude, an invariant of compact metric spaces given by the reciprocal of the ground state energy. Using recent techniques developed for pseudodifferential boundary problems we discuss the structure of the solution operator and resulting properties of the magnitude. In a semiclassical limit we obtain an asymptotic expansion of the magnitude in terms of curvature invariants of the manifold and the boundary, similar to the invariants arising in short-time expansions for heat kernels.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}