Asymptotics for Christoffel functions associated to continuum Schrödinger operators

Benjamin Eichinger
{"title":"Asymptotics for Christoffel functions associated to continuum Schrödinger operators","authors":"Benjamin Eichinger","doi":"10.1007/s11854-023-0319-7","DOIUrl":null,"url":null,"abstract":"<p>We prove asymptotics of the Christoffel function, <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that <i>Lλ</i><sub><i>L</i></sub>(<i>ξ</i>) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), we compute universality limits for continuum Schrödinger operators at scale <i>L</i> and obtain clock spacing of the eigenvalues of the finite range truncations.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0319-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove asymptotics of the Christoffel function, λL(ξ), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that L(ξ) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale λL(ξ), we compute universality limits for continuum Schrödinger operators at scale L and obtain clock spacing of the eigenvalues of the finite range truncations.

与连续薛定谔算子相关的 Christoffel 函数渐近论
我们证明了连续薛定谔算子的 Christoffel 函数 λL(ξ),在光谱度量的一些温和条件下,在本质谱内部点的渐近性。研究表明,LλL(ξ) 有一个极限,而这个极限是由光谱度量相对于马丁度量的拉顿-尼科迪姆导数给出的。结合最近开发的尺度λL(ξ)下普遍性极限的局部准则,我们计算了尺度L下连续薛定谔算子的普遍性极限,并得到了有限范围截断特征值的时钟间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信