Quantitative behavior of unipotent flows and an effective avoidance principle

Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah
{"title":"Quantitative behavior of unipotent flows and an effective avoidance principle","authors":"Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah","doi":"10.1007/s11854-023-0309-9","DOIUrl":null,"url":null,"abstract":"<p>We give an effective bound on how much time orbits of a unipotent group <i>U</i> on an arithmetic quotient <i>G</i>/Γ can stay near homogeneous subvarieties of <i>G</i>/Γ corresponding to ℚ-subgroups of <i>G</i>. In particular, we show that if such a <i>U</i>-orbit is moderately near a proper homogeneous subvariety of <i>G</i>/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.</p><p>Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0309-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We give an effective bound on how much time orbits of a unipotent group U on an arithmetic quotient G/Γ can stay near homogeneous subvarieties of G/Γ corresponding to ℚ-subgroups of G. In particular, we show that if such a U-orbit is moderately near a proper homogeneous subvariety of G/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.

Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.

单能流的定量行为和有效规避原则
我们给出了单能群 U 在算术商 G/Γ 上的轨道在与 G 的ℚ子群相对应的 G/Γ 的均质子域附近停留时间的有效边界。特别是,我们证明了如果这样的 U 轨道在 G/Γ 的一个适当均质子域附近中度停留很长时间,它就会非常接近另一个均质子域。我们的工作建立在 Dani 和 Margulis 的线性化方法之上。我们提出这些边界的动机是为了证明关于单能轨道的定量密度声明,我们计划在后续论文中继续研究。我们还给出了有效边界的新的定性含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信