Quasilinear elliptic equations involving measure valued absorption terms and measure data

Konstantinos T. Gkikas
{"title":"Quasilinear elliptic equations involving measure valued absorption terms and measure data","authors":"Konstantinos T. Gkikas","doi":"10.1007/s11854-023-0321-0","DOIUrl":null,"url":null,"abstract":"<p>Let 1 &lt; <i>p &lt; N</i> and Ω ⊂ ℝ<sup><i>N</i></sup> be an open bounded domain. We study the existence of solutions to equation <span>\\((E) - {\\Delta _p}u + g(u)\\sigma = \\mu \\)</span> in Ω, where <i>g</i> ∈ <i>C</i>(ℝ) is a nondecreasing function, <i>μ</i> is a bounded Radon measure on Ω and <i>σ</i> is a nonnegative Radon measure on ℝ<sup><i>N</i></sup>. We show that if <i>σ</i> belongs to some Morrey space of signed measures, then we may investigate the existence of solutions to equation (<i>E</i>) in the framework of renormalized solutions. Furthermore, imposing a subcritical integral condition on <i>g</i>, we prove that equation (<i>E</i>) admits a renormalized solution for any bounded Radon measure <i>μ</i>. When <span>\\(g(t) = |t{|^{q - 1}}t\\)</span> with <i>q &gt; p</i> − 1, we give various sufficient conditions for the existence of renormalized solutions to (<i>E</i>). These sufficient conditions are expressed in terms of Bessel capacities.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0321-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let 1 < p < N and Ω ⊂ ℝN be an open bounded domain. We study the existence of solutions to equation \((E) - {\Delta _p}u + g(u)\sigma = \mu \) in Ω, where gC(ℝ) is a nondecreasing function, μ is a bounded Radon measure on Ω and σ is a nonnegative Radon measure on ℝN. We show that if σ belongs to some Morrey space of signed measures, then we may investigate the existence of solutions to equation (E) in the framework of renormalized solutions. Furthermore, imposing a subcritical integral condition on g, we prove that equation (E) admits a renormalized solution for any bounded Radon measure μ. When \(g(t) = |t{|^{q - 1}}t\) with q > p − 1, we give various sufficient conditions for the existence of renormalized solutions to (E). These sufficient conditions are expressed in terms of Bessel capacities.

涉及量值吸收项和量值数据的准线性椭圆方程
假设 1 < p < N 和 Ω ⊂ ℝN 是一个开放的有界域。我们研究方程 \((E) - {\Delta _p}u + g(u)\sigma = \mu\) 在 Ω 中的解的存在性,其中 g∈ C(ℝ) 是一个非递减函数,μ 是 Ω 上的有界拉顿度量,σ 是 ℝN 上的非负拉顿度量。我们证明,如果 σ 属于某个有符号度量的 Morrey 空间,那么我们就可以在重规范化解的框架内研究方程 (E) 的解的存在性。此外,通过对 g 施加一个亚临界积分条件,我们证明方程 (E) 对于任何有界 Radon 量 μ 都有一个重正化解。当 \(g(t) = |t{|^{q - 1}}t\) 的 q > p - 1 时,我们给出了 (E) 存在重正化解的各种充分条件。这些充分条件用贝塞尔容量表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信