Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2

Pietro d’Avenia, Chao Ji
{"title":"Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2","authors":"Pietro d’Avenia, Chao Ji","doi":"10.1007/s11854-023-0312-1","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to the magnetic nonlinear Schrödinger equation </p><span>$${\\left( {{\\varepsilon \\over i}\\nabla - A(x)} \\right)^2}u + V(x)u = f(|u{|^2})u\\,\\,{\\rm{in}}\\,\\,{\\mathbb{R}^2},$$</span><p> where <i>ε</i> &gt; 0 is a parameter, <i>V</i>: ℝ<sup>2</sup> → ℝ and <i>A</i>: ℝ<sup>2</sup> → ℝ<sup>2</sup> are continuous functions and <i>f</i>: ℝ → ℝ is a <i>C</i><sup>1</sup> function having exponential critical growth. Under a global assumption on the potential <i>V</i>, we use variational methods and Ljusternick–Schnirelmann theory to prove existence, multiplicity, concentration, and decay of nontrivial solutions for <i>ε</i> &gt; 0 small.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0312-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the magnetic nonlinear Schrödinger equation

$${\left( {{\varepsilon \over i}\nabla - A(x)} \right)^2}u + V(x)u = f(|u{|^2})u\,\,{\rm{in}}\,\,{\mathbb{R}^2},$$

where ε > 0 is a parameter, V: ℝ2 → ℝ and A: ℝ2 → ℝ2 are continuous functions and f: ℝ → ℝ is a C1 function having exponential critical growth. Under a global assumption on the potential V, we use variational methods and Ljusternick–Schnirelmann theory to prove existence, multiplicity, concentration, and decay of nontrivial solutions for ε > 0 small.

具有指数临界增长ℝ2 的磁性非线性薛定谔方程的半经典状态
本文主要研究磁性非线性薛定谔方程 $${left( {{\varepsilon \over i}\nabla - A(x)} \right)^2}u + V(x)u = f(|u{|^2})u\,\,{\rm{in}}\,\,{\mathbb{R}^2},$$ 其中 ε > 0 为参数,V:ℝ2 → ℝ 和 A:ℝ2 → ℝ2 是连续函数,f: ℝ → ℝ 是具有指数临界增长的 C1 函数。在势 V 的全局假设下,我们使用变分法和 Ljusternick-Schnirelmann 理论证明了 ε > 0 小的非微观解的存在性、多重性、集中性和衰减性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信