Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah
{"title":"单能流的定量行为和有效规避原则","authors":"Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah","doi":"10.1007/s11854-023-0309-9","DOIUrl":null,"url":null,"abstract":"<p>We give an effective bound on how much time orbits of a unipotent group <i>U</i> on an arithmetic quotient <i>G</i>/Γ can stay near homogeneous subvarieties of <i>G</i>/Γ corresponding to ℚ-subgroups of <i>G</i>. In particular, we show that if such a <i>U</i>-orbit is moderately near a proper homogeneous subvariety of <i>G</i>/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.</p><p>Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative behavior of unipotent flows and an effective avoidance principle\",\"authors\":\"Elon Lindenstrauss, Gregorii Margulis, Amir Mohammadi, Nimish A. Shah\",\"doi\":\"10.1007/s11854-023-0309-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an effective bound on how much time orbits of a unipotent group <i>U</i> on an arithmetic quotient <i>G</i>/Γ can stay near homogeneous subvarieties of <i>G</i>/Γ corresponding to ℚ-subgroups of <i>G</i>. In particular, we show that if such a <i>U</i>-orbit is moderately near a proper homogeneous subvariety of <i>G</i>/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.</p><p>Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0309-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0309-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了单能群 U 在算术商 G/Γ 上的轨道在与 G 的ℚ子群相对应的 G/Γ 的均质子域附近停留时间的有效边界。特别是,我们证明了如果这样的 U 轨道在 G/Γ 的一个适当均质子域附近中度停留很长时间,它就会非常接近另一个均质子域。我们的工作建立在 Dani 和 Margulis 的线性化方法之上。我们提出这些边界的动机是为了证明关于单能轨道的定量密度声明,我们计划在后续论文中继续研究。我们还给出了有效边界的新的定性含义。
Quantitative behavior of unipotent flows and an effective avoidance principle
We give an effective bound on how much time orbits of a unipotent group U on an arithmetic quotient G/Γ can stay near homogeneous subvarieties of G/Γ corresponding to ℚ-subgroups of G. In particular, we show that if such a U-orbit is moderately near a proper homogeneous subvariety of G/Γ for a long time, it is very near a different homogeneous subvariety. Our work builds upon the linearization method of Dani and Margulis.
Our motivation in developing these bounds is in order to prove quantitative density statements about unipotent orbits, which we plan to pursue in a subsequent paper. New qualitative implications of our effective bounds are also given.