{"title":"S1-bounded Fourier multipliers on H1(ℝ) and functional calculus for semigroups","authors":"","doi":"10.1007/s11854-023-0317-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>T</em>: <em>H</em><sup>1</sup>(ℝ) → <em>H</em><sup>1</sup>(ℝ) be a bounded Fourier multiplier on the analytic Hardy space <em>H</em><sup>1</sup>(ℝ) ⊂ <em>L</em><sup>1</sup>(ℝ) and let <em>m</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>) be its symbol, that is, <span> <span>\\(\\widehat {T(h)} = m\\hat h\\)</span> </span> for all <em>h</em> ∈ <em>H</em><sup>1</sup>(ℝ). Let <em>S</em><sup>1</sup> be the Banach space of all trace class operators on <em>ℓ</em><sup>2</sup>. We show that <em>T</em> admits a bounded tensor extension <span> <span>\\(T\\overline \\otimes {I_{{S_1}}}:{H^1}(\\mathbb{R};{S^1}) \\to {H^1}(\\mathbb{R};{S^1})\\)</span> </span> if and only if there exist a Hilbert space ℌ and two functions <em>α</em>, <em>β</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>: ℌ) such that <em>m</em>(<em>s</em>+<em>t</em>) = 〈<em>α</em>(<em>t</em>), <em>β</em>(<em>s</em>)〉<sub>ℌ</sub> for almost every (<em>s, t</em>) ∈ ℝ<span> <sub>+</sub> <sup>2</sup> </span>. Such Fourier multipliers are called <em>S</em><sup>1</sup>-bounded and we let <span> <span>\\({{\\cal M}_{{S^1}}}({H^1}(\\mathbb{R}))\\)</span> </span> denote the Banach space of all <em>S</em><sup>1</sup>-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra <span> <span>\\({{\\cal A}_{0,{S^1}}}({\\mathbb{C}_ +})\\)</span> </span> of bounded analytic functions on ℂ<sub>+</sub> = {<em>z</em> ∈ ℂ:Re(<em>z</em>) > 0} and show that its dual space coincides with <span> <span>\\({{\\cal M}_{{S^1}}}({H^1}(\\mathbb{R}))\\)</span> </span>. Second, given any bounded <em>C</em><sub>0</sub>-semigroup (<em>T</em><sub><em>t</em></sub>)<sub><em>t</em>≥0</sub> on Hilbert space, and any <em>b</em> ∈ <em>L</em><sup>1</sup>(ℝ<sub>+</sub>), we establish an estimate <span> <span>\\(||\\int_0^\\infty {b(t)} {T_t}dt||\\,\\, \\lesssim\\,\\,||{L_b}|{|_{{{\\cal A}_{0,{S^1}}}}}\\)</span> </span>, where <em>L</em><sub><em>b</em></sub> denotes the Laplace transform of <em>b</em>. This improves previous functional calculus estimates recently obtained by the first two authors.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0317-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let T: H1(ℝ) → H1(ℝ) be a bounded Fourier multiplier on the analytic Hardy space H1(ℝ) ⊂ L1(ℝ) and let m ∈ L∞(ℝ+) be its symbol, that is, \(\widehat {T(h)} = m\hat h\) for all h ∈ H1(ℝ). Let S1 be the Banach space of all trace class operators on ℓ2. We show that T admits a bounded tensor extension \(T\overline \otimes {I_{{S_1}}}:{H^1}(\mathbb{R};{S^1}) \to {H^1}(\mathbb{R};{S^1})\) if and only if there exist a Hilbert space ℌ and two functions α, β ∈ L∞(ℝ+: ℌ) such that m(s+t) = 〈α(t), β(s)〉ℌ for almost every (s, t) ∈ ℝ+2. Such Fourier multipliers are called S1-bounded and we let \({{\cal M}_{{S^1}}}({H^1}(\mathbb{R}))\) denote the Banach space of all S1-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra \({{\cal A}_{0,{S^1}}}({\mathbb{C}_ +})\) of bounded analytic functions on ℂ+ = {z ∈ ℂ:Re(z) > 0} and show that its dual space coincides with \({{\cal M}_{{S^1}}}({H^1}(\mathbb{R}))\). Second, given any bounded C0-semigroup (Tt)t≥0 on Hilbert space, and any b ∈ L1(ℝ+), we establish an estimate \(||\int_0^\infty {b(t)} {T_t}dt||\,\, \lesssim\,\,||{L_b}|{|_{{{\cal A}_{0,{S^1}}}}}\), where Lb denotes the Laplace transform of b. This improves previous functional calculus estimates recently obtained by the first two authors.