S1-bounded Fourier multipliers on H1(ℝ) and functional calculus for semigroups

{"title":"S1-bounded Fourier multipliers on H1(ℝ) and functional calculus for semigroups","authors":"","doi":"10.1007/s11854-023-0317-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>T</em>: <em>H</em><sup>1</sup>(ℝ) → <em>H</em><sup>1</sup>(ℝ) be a bounded Fourier multiplier on the analytic Hardy space <em>H</em><sup>1</sup>(ℝ) ⊂ <em>L</em><sup>1</sup>(ℝ) and let <em>m</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>) be its symbol, that is, <span> <span>\\(\\widehat {T(h)} = m\\hat h\\)</span> </span> for all <em>h</em> ∈ <em>H</em><sup>1</sup>(ℝ). Let <em>S</em><sup>1</sup> be the Banach space of all trace class operators on <em>ℓ</em><sup>2</sup>. We show that <em>T</em> admits a bounded tensor extension <span> <span>\\(T\\overline \\otimes {I_{{S_1}}}:{H^1}(\\mathbb{R};{S^1}) \\to {H^1}(\\mathbb{R};{S^1})\\)</span> </span> if and only if there exist a Hilbert space ℌ and two functions <em>α</em>, <em>β</em> ∈ <em>L</em><sup>∞</sup>(ℝ<sub>+</sub>: ℌ) such that <em>m</em>(<em>s</em>+<em>t</em>) = 〈<em>α</em>(<em>t</em>), <em>β</em>(<em>s</em>)〉<sub>ℌ</sub> for almost every (<em>s, t</em>) ∈ ℝ<span> <sub>+</sub> <sup>2</sup> </span>. Such Fourier multipliers are called <em>S</em><sup>1</sup>-bounded and we let <span> <span>\\({{\\cal M}_{{S^1}}}({H^1}(\\mathbb{R}))\\)</span> </span> denote the Banach space of all <em>S</em><sup>1</sup>-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra <span> <span>\\({{\\cal A}_{0,{S^1}}}({\\mathbb{C}_ +})\\)</span> </span> of bounded analytic functions on ℂ<sub>+</sub> = {<em>z</em> ∈ ℂ:Re(<em>z</em>) &gt; 0} and show that its dual space coincides with <span> <span>\\({{\\cal M}_{{S^1}}}({H^1}(\\mathbb{R}))\\)</span> </span>. Second, given any bounded <em>C</em><sub>0</sub>-semigroup (<em>T</em><sub><em>t</em></sub>)<sub><em>t</em>≥0</sub> on Hilbert space, and any <em>b</em> ∈ <em>L</em><sup>1</sup>(ℝ<sub>+</sub>), we establish an estimate <span> <span>\\(||\\int_0^\\infty {b(t)} {T_t}dt||\\,\\, \\lesssim\\,\\,||{L_b}|{|_{{{\\cal A}_{0,{S^1}}}}}\\)</span> </span>, where <em>L</em><sub><em>b</em></sub> denotes the Laplace transform of <em>b</em>. This improves previous functional calculus estimates recently obtained by the first two authors.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0317-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let T: H1(ℝ) → H1(ℝ) be a bounded Fourier multiplier on the analytic Hardy space H1(ℝ) ⊂ L1(ℝ) and let mL(ℝ+) be its symbol, that is, \(\widehat {T(h)} = m\hat h\) for all hH1(ℝ). Let S1 be the Banach space of all trace class operators on 2. We show that T admits a bounded tensor extension \(T\overline \otimes {I_{{S_1}}}:{H^1}(\mathbb{R};{S^1}) \to {H^1}(\mathbb{R};{S^1})\) if and only if there exist a Hilbert space ℌ and two functions α, βL(ℝ+: ℌ) such that m(s+t) = 〈α(t), β(s)〉 for almost every (s, t) ∈ ℝ + 2 . Such Fourier multipliers are called S1-bounded and we let \({{\cal M}_{{S^1}}}({H^1}(\mathbb{R}))\) denote the Banach space of all S1-bounded Fourier multipliers. Next we apply this result to functional calculus estimates, in two steps. First we introduce a new Banach algebra \({{\cal A}_{0,{S^1}}}({\mathbb{C}_ +})\) of bounded analytic functions on ℂ+ = {z ∈ ℂ:Re(z) > 0} and show that its dual space coincides with \({{\cal M}_{{S^1}}}({H^1}(\mathbb{R}))\) . Second, given any bounded C0-semigroup (Tt)t≥0 on Hilbert space, and any bL1(ℝ+), we establish an estimate \(||\int_0^\infty {b(t)} {T_t}dt||\,\, \lesssim\,\,||{L_b}|{|_{{{\cal A}_{0,{S^1}}}}}\) , where Lb denotes the Laplace transform of b. This improves previous functional calculus estimates recently obtained by the first two authors.

H1(ℝ) 上的 S1 有界傅里叶乘数和半群的函数微积分
摘要 设 T: H1(ℝ) → H1(ℝ) 是解析哈代空间 H1(ℝ) 上的有界傅立叶乘法器,且设 m∈ L∞(ℝ+) 为其符号,即对于所有 h∈ H1(ℝ),(widehat {T(h)} = m\hat h\ )。让 S1 成为 ℓ2 上所有迹类算子的巴拿赫空间。我们证明,当且仅当存在一个希尔伯特空间ℌ和两个函数 α, β∈ L∞(ℝ+。) 时,T 允许有界张量扩展(T\overline \otimes {I_{S_1}}}:{H^1}(\mathbb{R};{S^1}) \to {H^1}(\mathbb{R};{S^1})):ℌ) ,使得 m(s+t) = 〈αα(t), β(s)〉ℌ,适用于几乎每一个 (s, t) ∈ ℝ + 2。这种傅里叶乘法器被称为 S1-bounded,我们让 \({{\cal M}_{{S^1}}}({H^1}(\mathbb{R}))\) 表示所有 S1-bounded 傅里叶乘法器的巴纳赫空间。接下来,我们分两步将这一结果应用于函数微积分估计。首先,我们在 ℂ+ = {z ∈ ℂ:Re(z) > 0} 上引入一个新的有界解析函数巴拿赫代数({{\cal A}_{0,{S^1}}}({\mathbb{C}_ +})),并证明其对偶空间与 \({{\cal M}_{S^1}}}({H^1}}(\mathbb{R}))\)重合。其次,给定希尔伯特空间上任意有界 C0 半群 (Tt)t≥0 以及任意 b∈ L1(ℝ+),我们建立一个估计值 \(||\int_0^\infty {b(t)} {T_t}dt||\,\,\lesssim\,\,||{L_b}|{{{{\cal A}_{0,{S^1}}}}}\)这改进了前两位作者最近得到的函数微积分估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信