{"title":"与连续薛定谔算子相关的 Christoffel 函数渐近论","authors":"Benjamin Eichinger","doi":"10.1007/s11854-023-0319-7","DOIUrl":null,"url":null,"abstract":"<p>We prove asymptotics of the Christoffel function, <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that <i>Lλ</i><sub><i>L</i></sub>(<i>ξ</i>) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), we compute universality limits for continuum Schrödinger operators at scale <i>L</i> and obtain clock spacing of the eigenvalues of the finite range truncations.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics for Christoffel functions associated to continuum Schrödinger operators\",\"authors\":\"Benjamin Eichinger\",\"doi\":\"10.1007/s11854-023-0319-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove asymptotics of the Christoffel function, <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that <i>Lλ</i><sub><i>L</i></sub>(<i>ξ</i>) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale <i>λ</i><sub><i>L</i></sub>(<i>ξ</i>), we compute universality limits for continuum Schrödinger operators at scale <i>L</i> and obtain clock spacing of the eigenvalues of the finite range truncations.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0319-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0319-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotics for Christoffel functions associated to continuum Schrödinger operators
We prove asymptotics of the Christoffel function, λL(ξ), of a continuum Schrödinger operator for points in the interior of the essential spectrum under some mild conditions on the spectral measure. It is shown that LλL(ξ) has a limit and that this limit is given by the Radon–Nikodym derivative of the spectral measure with respect to the Martin measure. Combining this with a recently developed local criterion for universality limits at scale λL(ξ), we compute universality limits for continuum Schrödinger operators at scale L and obtain clock spacing of the eigenvalues of the finite range truncations.