准线性方程的哈代权重空间:马兹亚型特征和存在最小值的充分条件

Ujjal Das, Yehuda Pinchover
{"title":"准线性方程的哈代权重空间:马兹亚型特征和存在最小值的充分条件","authors":"Ujjal Das, Yehuda Pinchover","doi":"10.1007/s11854-023-0318-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>p</i> ∈ (1, ∞) and Ω ⊂ ℝ<sup><i>N</i></sup> be a domain. Let</p><span>$$A: = ({a_{ij}}) \\in L_{{\\rm{loc}}}^\\infty (\\Omega;{\\mathbb{R}^{N \\times N}})$$</span><p>be a symmetric and locally uniformly positive definite matrix. Set</p><span>$$|\\xi |_A^2:\\sum\\limits_{i,j = 1}^N {{a_{ij}}(x){\\xi _i}{\\xi _j}},$$</span><p><i>ξ</i> ∈ ℝ<sup><i>N</i></sup>, and let <i>V</i> be a given potential in a certain local Morrey space. We assume that the energy functional</p><span>$${Q_{p,A,V}}(\\phi ): = \\int_\\Omega {[|\\nabla \\phi |_A^p + V|\\phi {|^p}]{\\rm{d}}x} $$</span><p>is nonnegative in <i>W</i><sup>1,<i>p</i></sup>(Ω) ∩ <i>C</i><sub><i>c</i></sub>(Ω).</p><p>We introduce a generalized notion of <i>Q</i><sub><i>p,A,V</i></sub>-capacity and characterize the space of all Hardy-weights for the functional <i>Q</i><sub><i>p,A,V</i></sub>, extending Maz’ya’s well known characterization of the space of Hardy-weights for the <i>p</i>-Laplacian. In addition, we provide various sufficient conditions on the potential <i>V</i> and the Hardy-weight <i>g</i> such that the best constant of the corresponding variational problem is attained in an appropriate Beppo Levi space.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers\",\"authors\":\"Ujjal Das, Yehuda Pinchover\",\"doi\":\"10.1007/s11854-023-0318-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>p</i> ∈ (1, ∞) and Ω ⊂ ℝ<sup><i>N</i></sup> be a domain. Let</p><span>$$A: = ({a_{ij}}) \\\\in L_{{\\\\rm{loc}}}^\\\\infty (\\\\Omega;{\\\\mathbb{R}^{N \\\\times N}})$$</span><p>be a symmetric and locally uniformly positive definite matrix. Set</p><span>$$|\\\\xi |_A^2:\\\\sum\\\\limits_{i,j = 1}^N {{a_{ij}}(x){\\\\xi _i}{\\\\xi _j}},$$</span><p><i>ξ</i> ∈ ℝ<sup><i>N</i></sup>, and let <i>V</i> be a given potential in a certain local Morrey space. We assume that the energy functional</p><span>$${Q_{p,A,V}}(\\\\phi ): = \\\\int_\\\\Omega {[|\\\\nabla \\\\phi |_A^p + V|\\\\phi {|^p}]{\\\\rm{d}}x} $$</span><p>is nonnegative in <i>W</i><sup>1,<i>p</i></sup>(Ω) ∩ <i>C</i><sub><i>c</i></sub>(Ω).</p><p>We introduce a generalized notion of <i>Q</i><sub><i>p,A,V</i></sub>-capacity and characterize the space of all Hardy-weights for the functional <i>Q</i><sub><i>p,A,V</i></sub>, extending Maz’ya’s well known characterization of the space of Hardy-weights for the <i>p</i>-Laplacian. In addition, we provide various sufficient conditions on the potential <i>V</i> and the Hardy-weight <i>g</i> such that the best constant of the corresponding variational problem is attained in an appropriate Beppo Levi space.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0318-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0318-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 p∈ (1, ∞) 和 Ω ⊂ ℝN 是一个域。设$$A: = ({a_{ij}}) \in L_{\rm{loc}}^\infty (\Omega;{\mathbb{R}^{N \times N}})$$为对称且局部均匀正定矩阵。设$$|/xi |_A^2:\sum\limits_{i,j = 1}^N {{a_{ij}}(x){\xi _i}{\xi _j}}, $$ξ∈ ℝN,并让 V 成为某个局部莫雷空间中的给定势。我们假设能量函数$${Q_{p,A,V}}(\phi ): = \int_\Omega {[|\nabla \phi |_A^p + V|\phi {|^p}]{\rm{d}}x}$$ 在 W1,p(Ω) ∩ Cc(Ω) 中为非负。我们引入了一个广义的 Qp,A,V-capacity 概念,并描述了函数 Qp,A,V 的所有哈代权重空间,扩展了马兹亚对 p 拉普拉奇的哈代权重空间的著名描述。此外,我们还提供了关于势 V 和哈代权重 g 的各种充分条件,从而使相应变分问题的最佳常数在适当的贝波-列维空间中达到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The space of Hardy-weights for quasilinear equations: Maz’ya-type characterization and sufficient conditions for existence of minimizers

Let p ∈ (1, ∞) and Ω ⊂ ℝN be a domain. Let

$$A: = ({a_{ij}}) \in L_{{\rm{loc}}}^\infty (\Omega;{\mathbb{R}^{N \times N}})$$

be a symmetric and locally uniformly positive definite matrix. Set

$$|\xi |_A^2:\sum\limits_{i,j = 1}^N {{a_{ij}}(x){\xi _i}{\xi _j}},$$

ξ ∈ ℝN, and let V be a given potential in a certain local Morrey space. We assume that the energy functional

$${Q_{p,A,V}}(\phi ): = \int_\Omega {[|\nabla \phi |_A^p + V|\phi {|^p}]{\rm{d}}x} $$

is nonnegative in W1,p(Ω) ∩ Cc(Ω).

We introduce a generalized notion of Qp,A,V-capacity and characterize the space of all Hardy-weights for the functional Qp,A,V, extending Maz’ya’s well known characterization of the space of Hardy-weights for the p-Laplacian. In addition, we provide various sufficient conditions on the potential V and the Hardy-weight g such that the best constant of the corresponding variational problem is attained in an appropriate Beppo Levi space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信