{"title":"通过傅立叶扩展估计打破双谐波 NLS 地面态的对称性","authors":"Enno Lenzmann, Tobias Weth","doi":"10.1007/s11854-023-0311-2","DOIUrl":null,"url":null,"abstract":"<p>We consider ground state solutions <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) of biharmonic (fourth-order) nonlinear Schrödinger equations of the form </p><span>$${\\Delta ^2}u + 2a\\Delta u + bu - |u{|^{p - 2}}u = 0\\,\\,\\,\\,{\\rm{in}}\\,\\,{\\mathbb{R}^N}$$</span><p> with positive constants <i>a, b</i> > 0 and exponents 2 < <i>p</i> < 2*, where <span>\\({2^ * } = {{2N} \\over {N - 4}}\\)</span> if <i>N</i> > 4 and 2* = ∞ if <i>N</i> ≤ 4. By exploiting a connection to the adjoint Stein–Tomas inequality on the unit sphere and by using trial functions due to Knapp, we prove a general symmetry breaking result by showing that all ground states <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) in dimension <i>N</i> ≥ 2 fail to be radially symmetric for all exponents <span>\\(2 < p < {{2N + 2} \\over {N - 1}}\\)</span> in a suitable regime of <i>a, b</i> > 0.</p><p>As applications of our main result, we also prove symmetry breaking for a minimization problem with constrained <i>L</i><sup>2</sup>-mass and for a related problem on the unit ball in ℝ<sup><i>N</i></sup> subject to Dirichlet boundary conditions.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates\",\"authors\":\"Enno Lenzmann, Tobias Weth\",\"doi\":\"10.1007/s11854-023-0311-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider ground state solutions <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) of biharmonic (fourth-order) nonlinear Schrödinger equations of the form </p><span>$${\\\\Delta ^2}u + 2a\\\\Delta u + bu - |u{|^{p - 2}}u = 0\\\\,\\\\,\\\\,\\\\,{\\\\rm{in}}\\\\,\\\\,{\\\\mathbb{R}^N}$$</span><p> with positive constants <i>a, b</i> > 0 and exponents 2 < <i>p</i> < 2*, where <span>\\\\({2^ * } = {{2N} \\\\over {N - 4}}\\\\)</span> if <i>N</i> > 4 and 2* = ∞ if <i>N</i> ≤ 4. By exploiting a connection to the adjoint Stein–Tomas inequality on the unit sphere and by using trial functions due to Knapp, we prove a general symmetry breaking result by showing that all ground states <i>u</i> ∈ <i>H</i><sup>2</sup>(ℝ<sup><i>N</i></sup>) in dimension <i>N</i> ≥ 2 fail to be radially symmetric for all exponents <span>\\\\(2 < p < {{2N + 2} \\\\over {N - 1}}\\\\)</span> in a suitable regime of <i>a, b</i> > 0.</p><p>As applications of our main result, we also prove symmetry breaking for a minimization problem with constrained <i>L</i><sup>2</sup>-mass and for a related problem on the unit ball in ℝ<sup><i>N</i></sup> subject to Dirichlet boundary conditions.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0311-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0311-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑双谐波(四阶)非线性薛定谔方程的基态解 u∈ H2(ℝN),其形式为 $${Delta ^2}u + 2a\Delta u + bu - |u{|^{p - 2}}u = 0\,\,\,{\rm{in}}\,\,{\mathbb{R}^N}$ 元,其中 a, b >;0 和指数 2 < p < 2*,其中,如果 N > 4,则 \({2^ * } = {{2N} \over {N - 4}}\) ;如果 N ≤ 4,则 2* = ∞。通过利用与单位球上的邻接斯坦因-托马斯不等式的联系,并使用克纳普(Knapp)的试函数,我们证明了一个普遍的对称性破缺结果,即在一个合适的a, b > 0制度中,维数N≥2的所有基态u∈ H2(ℝN)对于所有指数\(2 < p < {{2N + 2} \over {N - 1}}\)都不是径向对称的。作为我们主要结果的应用,我们还证明了有约束 L2 质量的最小化问题以及在 ℝN 的单位球上受 Dirichlet 边界条件限制的相关问题的对称性破缺。
Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates
We consider ground state solutions u ∈ H2(ℝN) of biharmonic (fourth-order) nonlinear Schrödinger equations of the form
$${\Delta ^2}u + 2a\Delta u + bu - |u{|^{p - 2}}u = 0\,\,\,\,{\rm{in}}\,\,{\mathbb{R}^N}$$
with positive constants a, b > 0 and exponents 2 < p < 2*, where \({2^ * } = {{2N} \over {N - 4}}\) if N > 4 and 2* = ∞ if N ≤ 4. By exploiting a connection to the adjoint Stein–Tomas inequality on the unit sphere and by using trial functions due to Knapp, we prove a general symmetry breaking result by showing that all ground states u ∈ H2(ℝN) in dimension N ≥ 2 fail to be radially symmetric for all exponents \(2 < p < {{2N + 2} \over {N - 1}}\) in a suitable regime of a, b > 0.
As applications of our main result, we also prove symmetry breaking for a minimization problem with constrained L2-mass and for a related problem on the unit ball in ℝN subject to Dirichlet boundary conditions.