Oscillatory integral operators with homogeneous phase functions

{"title":"Oscillatory integral operators with homogeneous phase functions","authors":"","doi":"10.1007/s11854-023-0320-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Oscillatory integral operators with 1-homogeneous phase functions satisfying a convexity condition are considered. For these we show the <em>L</em><sup><em>p</em></sup>–<em>L</em><sup><em>p</em></sup>-estimates for the Fourier extension operator of the cone due to Ou–Wang via polynomial partitioning. For this purpose, we combine the arguments of Ou–Wang with the analysis of Guth–Hickman–Iliopoulou, who previously showed sharp <em>L</em><sup><em>p</em></sup>–<em>L</em><sup><em>p</em></sup>-estimates for non-homogeneous phase functions with variable coefficients under a convexity assumption. Furthermore, we provide examples exhibiting Kakeya compression, which shows a more restrictive range than dictated by the Knapp example in higher dimensions. We apply the oscillatory integral estimates to show new local smoothing estimates for wave equations on compact Riemannian manifolds (<em>M, g</em>) with dim <em>M</em> ≥ 3. This generalizes the argument for the Euclidean wave equation due to Gao–Liu–Miao–Xi.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0320-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oscillatory integral operators with 1-homogeneous phase functions satisfying a convexity condition are considered. For these we show the LpLp-estimates for the Fourier extension operator of the cone due to Ou–Wang via polynomial partitioning. For this purpose, we combine the arguments of Ou–Wang with the analysis of Guth–Hickman–Iliopoulou, who previously showed sharp LpLp-estimates for non-homogeneous phase functions with variable coefficients under a convexity assumption. Furthermore, we provide examples exhibiting Kakeya compression, which shows a more restrictive range than dictated by the Knapp example in higher dimensions. We apply the oscillatory integral estimates to show new local smoothing estimates for wave equations on compact Riemannian manifolds (M, g) with dim M ≥ 3. This generalizes the argument for the Euclidean wave equation due to Gao–Liu–Miao–Xi.

具有同相函数的振荡积分算子
摘要 本文考虑了具有满足凸性条件的 1 次均相函数的振荡积分算子。对于这些振荡积分算子,我们通过多项式分割,给出了欧-王(Ou-Wang)提出的锥体傅立叶扩展算子的 Lp-Lp 估计值。为此,我们将 Ou-Wang 的论点与 Guth-Hickman-Iliopoulou 的分析相结合,后者之前曾在凸性假设条件下为具有可变系数的非均相函数展示了尖锐的 Lp-Lp-estimates 。此外,我们还提供了展示 Kakeya 压缩的示例,它显示了比 Knapp 示例在更高维度上更严格的范围。我们应用振荡积分估算,为 dim M ≥ 3 的紧凑黎曼流形 (M, g) 上的波方程展示了新的局部平滑估算。这推广了高刘淼溪关于欧几里得波方程的论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信