Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
Blow-up and boundedness in a chemotaxis system with flux-limited diffusion and logistic source 具有通量限制扩散和logistic源的趋化系统的爆破和有界性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-18 DOI: 10.1016/j.na.2025.113868
Monica Marras , Stella Vernier-Piro , Tomomi Yokota
{"title":"Blow-up and boundedness in a chemotaxis system with flux-limited diffusion and logistic source","authors":"Monica Marras , Stella Vernier-Piro , Tomomi Yokota","doi":"10.1016/j.na.2025.113868","DOIUrl":"10.1016/j.na.2025.113868","url":null,"abstract":"<div><div>In this paper we consider radially symmetric solutions of the parabolic–elliptic cross-diffusion system with flux limitation term, <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mrow><mfrac><mrow><mi>u</mi><mo>∇</mo><mi>u</mi></mrow><mrow><msqrt><mrow><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></mrow></mfrac></mrow><mo>)</mo></mrow><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>m</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace><mi>m</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mrow><mo>|</mo><mi>Ω</mi><mo>|</mo></mrow></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under no-flux boundary conditions, where <span><math><mrow><mi>Ω</mi><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>) is a ball, <span><math><mi>χ</mi></math></span>, <span><math><mi>λ</mi></math></span>, <span><math><mi>μ</mi></math></span> are positive constants and <span><math><mrow><mi>k</mi><mo>></mo><mn>1</mn></mrow></math></span> . Under suitable conditions on the data, we prove that the solution is global in time. If <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, under conditions on the data, we prove that the solution <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> blows up in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm at finite time <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113868"},"PeriodicalIF":1.3,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144306506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Everywhere regularity for local minimizers of asymptotically convex non-autonomous functionals 渐近凸非自治泛函的局部极小值的处处正则性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-18 DOI: 10.1016/j.na.2025.113869
Junjie Zhang , Shenzhou Zheng
{"title":"Everywhere regularity for local minimizers of asymptotically convex non-autonomous functionals","authors":"Junjie Zhang ,&nbsp;Shenzhou Zheng","doi":"10.1016/j.na.2025.113869","DOIUrl":"10.1016/j.na.2025.113869","url":null,"abstract":"<div><div>We consider everywhere regularity of local vectorial minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> to a class of non-autonomous functionals <span><span><span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Under assumptions that <span><math><mi>Φ</mi></math></span> is an Orlicz function and the coefficient function <span><math><mrow><mi>a</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></mrow></math></span> belongs to <span><math><mrow><mi>V</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>κ</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>κ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where the integrand <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is only asymptotically regular with respect to the integrand <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113869"},"PeriodicalIF":1.3,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144306507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of an unfavorable region on the invasion process of a species with Allee effect 不利区域对具有Allee效应的物种入侵过程的影响
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-14 DOI: 10.1016/j.na.2025.113872
Pengchao Lai , Junfan Lu
{"title":"The effect of an unfavorable region on the invasion process of a species with Allee effect","authors":"Pengchao Lai ,&nbsp;Junfan Lu","doi":"10.1016/j.na.2025.113872","DOIUrl":"10.1016/j.na.2025.113872","url":null,"abstract":"<div><div>To model a propagating phenomena through the environment with an unfavorable region, we consider a reaction–diffusion equation with negative growth rate in the unfavorable region and bistable reaction outside of it. We study rigorously the influence of <span><math><mi>L</mi></math></span>, the width of the unfavorable region, on the propagation of solutions. It turns out that there exists a critical value <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> depending only on the reaction term such that, when <span><math><mrow><mi>L</mi><mo>&lt;</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, spreading happens for any solution in the sense that it passes through the unfavorable region successfully and establish with minor defect in the region; when <span><math><mrow><mi>L</mi><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, spreading happens only for a species with large initial population, while residue happens for a population with small initial data, in the sense that the solution converges to a small steady state; when <span><math><mrow><mi>L</mi><mo>&gt;</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> we have a trichotomy result: spreading/residue happens for a species with large/small initial population, but, for a species with medium-sized initial data, it cannot pass through the region either and converges to a transition steady state.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113872"},"PeriodicalIF":1.3,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A flow method for curvature equations 曲率方程的流动法
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-14 DOI: 10.1016/j.na.2025.113873
Shanwei Ding, Guanghan Li
{"title":"A flow method for curvature equations","authors":"Shanwei Ding,&nbsp;Guanghan Li","doi":"10.1016/j.na.2025.113873","DOIUrl":"10.1016/j.na.2025.113873","url":null,"abstract":"<div><div>We consider a general curvature equation <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mi>G</mi><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>k</mi></math></span> is the principal curvature of the hypersurface <em>M</em> with position vector <span><math><mi>X</mi></math></span>. It includes the classical prescribed curvature measures problem and area measures problem. However, Guan et al. (2015) proved that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> estimate fails usually for general function <span><math><mi>F</mi></math></span>. Thus, in this paper, we pose some additional conditions of <span><math><mi>G</mi></math></span> to get existence results by a suitably designed parabolic flow. In particular, if <span><math><mrow><mi>F</mi><mo>=</mo><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msubsup></mrow></math></span> for <span><math><mrow><mo>∀</mo><mn>1</mn><mo>⩽</mo><mi>k</mi><mo>⩽</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, the existence result has been derived in the famous work Guan et al. (2012) with <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span>. This result will be generalized to <span><math><mrow><mi>G</mi><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mfrac><mrow><mi>X</mi></mrow><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow></mfrac><mo>)</mo></mrow><msup><mrow><mrow><mo>〈</mo><mi>X</mi><mo>,</mo><mi>ν</mi><mo>〉</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn><mo>−</mo><mi>p</mi></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>q</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow></msup></mrow></math></span> with <span><math><mrow><mi>p</mi><mo>&gt;</mo><mi>q</mi></mrow></math></span> for arbitrary <span><math><mi>k</mi></math></span> by a suitable auxiliary function. The uniqueness of the solutions in some cases is also studied.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113873"},"PeriodicalIF":1.3,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On nonlinear Landau damping and Gevrey regularity 非线性朗道阻尼和格夫里正则性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-14 DOI: 10.1016/j.na.2025.113875
Christian Zillinger
{"title":"On nonlinear Landau damping and Gevrey regularity","authors":"Christian Zillinger","doi":"10.1016/j.na.2025.113875","DOIUrl":"10.1016/j.na.2025.113875","url":null,"abstract":"<div><div>In this article we study the problem of nonlinear Landau damping for the Vlasov–Poisson equations on the torus. We introduce <em>anisotropic Gevrey spaces</em> as a new tool to capture the time- and frequency-dependence of resonances. In particular, we show that for small initial data of size <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>ϵ</mi><mo>&lt;</mo><msub><mrow><mi>ϵ</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> and time intervals <span><math><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mi>N</mi></mrow></msup><mo>)</mo></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> arbitrary but fixed, nonlinear stability holds in regularity classes larger than Gevrey-3, uniformly in <span><math><mi>ϵ</mi></math></span>. As a complementary result we construct families of Sobolev regular initial data which exhibit nonlinear Landau damping. Our proof is based on the methods of Grenier, Nguyen and Rodnianski (Grenier et al., 2021).</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113875"},"PeriodicalIF":1.3,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144279953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the properties of rearrangement-invariant quasi-Banach function spaces 重排不变拟banach函数空间的性质
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-12 DOI: 10.1016/j.na.2025.113854
Anna Musilová , Aleš Nekvinda , Dalimil Peša , Hana Turčinová
{"title":"On the properties of rearrangement-invariant quasi-Banach function spaces","authors":"Anna Musilová ,&nbsp;Aleš Nekvinda ,&nbsp;Dalimil Peša ,&nbsp;Hana Turčinová","doi":"10.1016/j.na.2025.113854","DOIUrl":"10.1016/j.na.2025.113854","url":null,"abstract":"<div><div>This paper explores some important aspects of the theory of rearrangement-invariant quasi-Banach function spaces. We focus on two main topics. Firstly, we prove an analogue of the Luxemburg representation theorem for rearrangement-invariant quasi-Banach function spaces over resonant measure spaces. Secondly, we develop the theory of fundamental functions and endpoint spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113854"},"PeriodicalIF":1.3,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144262332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-time behavior of the heterogeneous SIRS epidemiological model 异质SIRS流行病学模型的长期行为
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-06 DOI: 10.1016/j.na.2025.113867
Romain Ducasse, Maxime Laborde
{"title":"Long-time behavior of the heterogeneous SIRS epidemiological model","authors":"Romain Ducasse,&nbsp;Maxime Laborde","doi":"10.1016/j.na.2025.113867","DOIUrl":"10.1016/j.na.2025.113867","url":null,"abstract":"<div><div>We study the long-time behavior of solutions of the SIRS model, a reaction–diffusion system that appears in epidemiology to describe the spread of epidemics. We allow the system to be heterogeneous periodic. Under some hypotheses on the coefficients, we prove that the solutions converge to an equilibrium that we identify and establish some estimates on the speed of propagation.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113867"},"PeriodicalIF":1.3,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144229864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De Leeuw representations of functionals on Lipschitz spaces 李普希茨空间上泛函的德列表示
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-04 DOI: 10.1016/j.na.2025.113851
Ramón J. Aliaga , Eva Pernecká , Richard J. Smith
{"title":"De Leeuw representations of functionals on Lipschitz spaces","authors":"Ramón J. Aliaga ,&nbsp;Eva Pernecká ,&nbsp;Richard J. Smith","doi":"10.1016/j.na.2025.113851","DOIUrl":"10.1016/j.na.2025.113851","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Lip&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; be the space of Lipschitz functions on a complete metric space &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; that vanish at a point &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We investigate its dual &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Lip&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; using the De Leeuw transform, which allows representing each functional on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Lip&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as a (non-unique) measure on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; is the space of pairs &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≠&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We distinguish a set of points of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We define a natural metric &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; extending &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by &lt;span&gt;&lt;math&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;-cyclical monotonicity of their support, extending known results for functionals in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the predual of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Lip&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, and use this to characterise measure-induced and majorisable functionals in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Lip&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as those admitting optimal representations ","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113851"},"PeriodicalIF":1.3,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients 具有不连续各向异性系数的Hodge-Maxwell系统的BMO估计
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-03 DOI: 10.1016/j.na.2025.113852
Dharmendra Kumar , Swarnendu Sil
{"title":"BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients","authors":"Dharmendra Kumar ,&nbsp;Swarnendu Sil","doi":"10.1016/j.na.2025.113852","DOIUrl":"10.1016/j.na.2025.113852","url":null,"abstract":"<div><div>We prove up to the boundary <span><math><mi>BMO</mi></math></span> estimates for linear Maxwell–Hodge type systems for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>-valued differential <span><math><mi>k</mi></math></span>-forms <span><math><mi>u</mi></math></span> in <span><math><mi>n</mi></math></span> dimensions <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>f</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>g</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mi>ν</mi><mo>∧</mo><mi>u</mi></mrow></math></span> prescribed on <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span> where the coefficient tensors <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></math></span> are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>.</mo></mrow></math></span> Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113852"},"PeriodicalIF":1.3,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted L∞-estimates for solutions of the damped wave equation in three space dimensions and its application 三维阻尼波动方程解的加权L∞估计及其应用
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-03 DOI: 10.1016/j.na.2025.113850
Vladimir Georgiev , Kosuke Kita
{"title":"Weighted L∞-estimates for solutions of the damped wave equation in three space dimensions and its application","authors":"Vladimir Georgiev ,&nbsp;Kosuke Kita","doi":"10.1016/j.na.2025.113850","DOIUrl":"10.1016/j.na.2025.113850","url":null,"abstract":"<div><div>In this paper, we derive a weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-estimate of the solution to the damped wave equation in three space dimensions. Our proof uses a concrete representation formula of the solution to the damped wave equation that does not rely on the Fourier transform or the energy method. Moreover, by applying our weighted estimate, we consider the global existence of solutions to nonlinear damped wave equations for small data and obtain a new pointwise decay estimate.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113850"},"PeriodicalIF":1.3,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信