Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
Instability as p-harmonic maps for a family of examples 作为 p 谐波图的一系列实例的不稳定性
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-06-12 DOI: 10.1016/j.na.2024.113585
Nobumitsu Nakauchi
{"title":"Instability as p-harmonic maps for a family of examples","authors":"Nobumitsu Nakauchi","doi":"10.1016/j.na.2024.113585","DOIUrl":"https://doi.org/10.1016/j.na.2024.113585","url":null,"abstract":"<div><p>The radial map <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow></mfrac></mrow></math></span> is a well-known example of a harmonic map from <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mspace></mspace><mo>−</mo><mspace></mspace><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span> into the spheres <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> with a point singularity at <span><math><mrow><mi>x</mi><mo>=</mo></mrow></math></span> 0. In Nakauchi (2023) the author constructed, for any positive integers <span><math><mi>m</mi></math></span>, <span><math><mi>n</mi></math></span> satisfying <span><math><mrow><mi>n</mi><mo>≤</mo><mi>m</mi></mrow></math></span>, a family of harmonic maps <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup></math></span> from <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup><mspace></mspace><mo>−</mo><mspace></mspace><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span> into the sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup></math></span> with a point singularity at the origin, such that <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></math></span> is the above radial map. It is known that for <span><math><mi>m</mi></math></span> <span><math><mo>≥</mo></math></span> 3, the radial map <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup></math></span> is not only <em>stable</em> as a harmonic map but also a <em>minimizer</em> of the energy of harmonic maps. On the other hand in Nakauchi (2024) the author prove that for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, the map <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup></math></span> is <em>unstable</em> if <span><math><mrow><mi>m</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mi>n</mi></math></span> <span><math><mrow><mo>&gt;</mo><mfrac><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. It is remarkable that <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup></math></span> may be <em>unstable</em> in the case of <span><math><mi>n</mi></math></span> <span><math><mo>≥</mo></math></span> 2.</p><p>We see that <span><math><msup><mrow><mi>u</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msup></math></span> is a <span><math><mi>p</mi></math></span> <!--> <!-->-<!--> <!","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141313759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotonicity results of solutions to the uniformly elliptic nonlocal Bellman system 均匀椭圆非局部贝尔曼系统解的单调性结果
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-06-11 DOI: 10.1016/j.na.2024.113586
Xueying Chen
{"title":"Monotonicity results of solutions to the uniformly elliptic nonlocal Bellman system","authors":"Xueying Chen","doi":"10.1016/j.na.2024.113586","DOIUrl":"https://doi.org/10.1016/j.na.2024.113586","url":null,"abstract":"<div><p>In this paper, we consider the uniformly elliptic nonlocal Bellman problem <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mspace></mspace></mtd><mtd><msub><mrow><mi>F</mi></mrow><mrow><mi>s</mi></mrow></msub><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mspace></mspace></mtd><mtd><msub><mrow><mi>F</mi></mrow><mrow><mi>s</mi></mrow></msub><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Firstly, we study narrow region principles for the uniformly elliptic nonlocal Bellman operators in bounded and unbounded domains, which play key roles in obtaining the main results by the process of sliding method. Then we deal with monotonicity properties of solutions to the uniformly elliptic nonlocal Bellman system.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absence of Lavrentiev’s gap for anisotropic functionals 各向异性函数不存在拉夫连季耶夫缺口
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-06-03 DOI: 10.1016/j.na.2024.113584
Michał Borowski, Iwona Chlebicka, Błażej Miasojedow
{"title":"Absence of Lavrentiev’s gap for anisotropic functionals","authors":"Michał Borowski,&nbsp;Iwona Chlebicka,&nbsp;Błażej Miasojedow","doi":"10.1016/j.na.2024.113584","DOIUrl":"https://doi.org/10.1016/j.na.2024.113584","url":null,"abstract":"<div><p>We establish the absence of the Lavrentiev gap between Sobolev and smooth maps for a non-autonomous variational problem of a general structure, where the integrand is assumed to be controlled by a function which is convex and anisotropic with respect to the last variable. This fact follows from new results on fine approximation properties of the natural underlying unconventional function space. Scalar and vector-valued problems are studied.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001032/pdfft?md5=e059dc3d1c574cad9edf28bf3f782d9e&pid=1-s2.0-S0362546X24001032-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141239874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schauder and Calderón–Zygmund type estimates for fully nonlinear parabolic equations under “small ellipticity aperture” and applications "小椭圆度孔径 "下全非线性抛物方程的 Schauder 和 Calderón-Zygmund 类型估计及其应用
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-29 DOI: 10.1016/j.na.2024.113578
João Vitor da Silva , Makson S. Santos
{"title":"Schauder and Calderón–Zygmund type estimates for fully nonlinear parabolic equations under “small ellipticity aperture” and applications","authors":"João Vitor da Silva ,&nbsp;Makson S. Santos","doi":"10.1016/j.na.2024.113578","DOIUrl":"https://doi.org/10.1016/j.na.2024.113578","url":null,"abstract":"<div><p>In this manuscript, we derive some Schauder estimates for viscosity solutions to non-convex fully nonlinear second-order parabolic equations of the form: <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>,</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mspace></mspace><msub><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>]</mo></mrow><mo>,</mo></mrow></math></span></span></span>provided that the source <span><math><mi>f</mi></math></span> and the coefficients of <span><math><mi>F</mi></math></span> are Hólder continuous functions, and <span><math><mi>F</mi></math></span> enjoys a small ellipticity aperture. Furthermore, for problems with merely bounded data, we prove that such solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mtext>Log-Lip</mtext></mrow></msup></math></span>-regular. We also obtain Calderón-Zygmund estimates for such a class of non-convex operators. Finally, we connect our results and recent estimates for fully nonlinear models in certain solution classes.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141239875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
List’s flow with integral curvature bounds on complete noncompact Riemannian manifolds 完整非紧密黎曼流形上具有积分曲率边界的利斯特流
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-29 DOI: 10.1016/j.na.2024.113583
Chuanhuan Li , Yi Li
{"title":"List’s flow with integral curvature bounds on complete noncompact Riemannian manifolds","authors":"Chuanhuan Li ,&nbsp;Yi Li","doi":"10.1016/j.na.2024.113583","DOIUrl":"https://doi.org/10.1016/j.na.2024.113583","url":null,"abstract":"<div><p>In this paper, we study the extended Ricci flow on a complete noncompact Riemannian manifold of dimension <span><math><mi>n</mi></math></span> introduced by List in List (2008), and prove the short-time existence with bounded <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm of Riemann curvature. In the critical case <span><math><mrow><mi>p</mi><mo>=</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we replace the bounded <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm of Riemann curvature by the bounded <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm of Ricci curvature in the short-time existence.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141239873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On aspects of the normalized Infinity Laplacian on Finsler manifolds 论芬斯勒流形上归一化无穷拉普拉奇的各个方面
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-27 DOI: 10.1016/j.na.2024.113579
Ahmed Mohammed , Leandro F. Pessoa
{"title":"On aspects of the normalized Infinity Laplacian on Finsler manifolds","authors":"Ahmed Mohammed ,&nbsp;Leandro F. Pessoa","doi":"10.1016/j.na.2024.113579","DOIUrl":"https://doi.org/10.1016/j.na.2024.113579","url":null,"abstract":"<div><p>In the context of Finsler manifolds, the paper explores the existence, asymptotic boundary behavior, and uniqueness of viscosity solutions to infinite boundary-value problems associated with the normalized infinite Laplacian in relatively compact subsets. The equation under consideration incorporates lower-order terms featuring non-linear gradient terms. To achieve this objective, we study Dirichlet problems with continuous boundary data and establish a comparison principle, which is of independent significance.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sufficient condition for blowup of the nonlinear Klein–Gordon equation with positive initial energy in FLRW spacetimes FLRW 时空中具有正初始能量的非线性克莱因-戈登方程爆炸的充分条件
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-25 DOI: 10.1016/j.na.2024.113582
Jonathon McCollum , Gregory Mwamba , Jesús Oliver
{"title":"A sufficient condition for blowup of the nonlinear Klein–Gordon equation with positive initial energy in FLRW spacetimes","authors":"Jonathon McCollum ,&nbsp;Gregory Mwamba ,&nbsp;Jesús Oliver","doi":"10.1016/j.na.2024.113582","DOIUrl":"https://doi.org/10.1016/j.na.2024.113582","url":null,"abstract":"<div><p>In this paper we demonstrate a sufficient condition for blowup of the nonlinear Klein–Gordon equation with arbitrarily positive initial energy in Friedmann–Lemaître–Robertson–Walker spacetimes. This is accomplished using an established concavity method that has been employed for similar PDEs in Minkowski space. This proof relies on the energy inequality associated with this equation, <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mi>E</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, also proved herein using a geometric method.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001019/pdfft?md5=d54855b15e1a68d7fce2f1d266b7566a&pid=1-s2.0-S0362546X24001019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalized solutions for the nonlinear Schrödinger equation with potential and combined nonlinearities 具有势能和组合非线性的非线性薛定谔方程的归一化解
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-25 DOI: 10.1016/j.na.2024.113581
Jin-Cai Kang, Chun-Lei Tang
{"title":"Normalized solutions for the nonlinear Schrödinger equation with potential and combined nonlinearities","authors":"Jin-Cai Kang,&nbsp;Chun-Lei Tang","doi":"10.1016/j.na.2024.113581","DOIUrl":"https://doi.org/10.1016/j.na.2024.113581","url":null,"abstract":"<div><p>In present paper, we study the following nonlinear Schrödinger equation with combined power nonlinearities <span><span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mi>λ</mi><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span></span></span>having prescribed mass <span><span><span><math><mrow><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>μ</mi><mo>,</mo><mi>a</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span> is the critical Sobolev exponent, <span><math><mi>V</mi></math></span> is an external potential vanishing at infinity, and the parameter <span><math><mrow><mi>λ</mi><mo>∈</mo><mi>R</mi></mrow></math></span> appears as a Lagrange multiplier. Under some mild assumptions on <span><math><mi>V</mi></math></span>, combining the Pohožaev manifold, constrained minimization arguments and some analytical skills, we get the existence of normalized solutions for the problem with <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>. At the same time, the exponential decay property of the solutions is established, which is important for the instability analysis of the standing waves. Furthermore, we give a description of the ground state set and obtain the strong instability of the standing waves for <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>[</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141094947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measure-valued solutions of scalar hyperbolic conservation laws, Part 1: Existence and time evolution of singular parts 标量双曲守恒定律的量值解,第 1 部分:奇异部分的存在和时间演化
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-24 DOI: 10.1016/j.na.2024.113571
Michiel Bertsch , Flavia Smarrazzo , Andrea Terracina , Alberto Tesei
{"title":"Measure-valued solutions of scalar hyperbolic conservation laws, Part 1: Existence and time evolution of singular parts","authors":"Michiel Bertsch ,&nbsp;Flavia Smarrazzo ,&nbsp;Andrea Terracina ,&nbsp;Alberto Tesei","doi":"10.1016/j.na.2024.113571","DOIUrl":"https://doi.org/10.1016/j.na.2024.113571","url":null,"abstract":"<div><p>We prove existence for a class of signed Radon measure-valued entropy solutions of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension. The initial data of the problem is a finite superposition of Dirac masses, whereas the flux is Lipschitz continuous. Existence is proven by a constructive procedure which makes use of a suitable family of approximating problems. Relevant qualitative properties of such constructed solutions are pointed out.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimization of a Ginzburg–Landau functional with mean curvature operator in 1-D 带有一维平均曲率算子的金兹堡-兰道函数的最小化
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-24 DOI: 10.1016/j.na.2024.113577
Raffaele Folino , Corrado Lattanzio
{"title":"Minimization of a Ginzburg–Landau functional with mean curvature operator in 1-D","authors":"Raffaele Folino ,&nbsp;Corrado Lattanzio","doi":"10.1016/j.na.2024.113577","DOIUrl":"https://doi.org/10.1016/j.na.2024.113577","url":null,"abstract":"<div><p>The aim of this paper is to investigate the minimization problem related to a Ginzburg–Landau energy functional, where in particular a nonlinear diffusion of mean curvature-type is considered, together with a classical double well potential. A careful analysis of the corresponding Euler–Lagrange equation, equipped with natural boundary conditions and mass constraint, leads to the existence of an unique <em>Maxwell solution</em>, namely a monotone increasing solution obtained for small diffusion and close to the so-called <em>Maxwell point</em>. Then, it is shown that this particular solution (and its reversal) has least energy among all the stationary points satisfying the given mass constraint. Moreover, as the viscosity parameter tends to zero, it converges to the increasing (decreasing for the reversal) <em>single interface solution</em>, namely the constrained minimizer of the corresponding energy without diffusion. Connections with Cahn–Hilliard models, obtained in terms of variational derivatives of the total free energy considered here, are also presented.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24000968/pdfft?md5=f10b6f5c3dc1fa1c26ca3e9888bd0919&pid=1-s2.0-S0362546X24000968-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信