具有不连续各向异性系数的Hodge-Maxwell系统的BMO估计

IF 1.3 2区 数学 Q1 MATHEMATICS
Dharmendra Kumar , Swarnendu Sil
{"title":"具有不连续各向异性系数的Hodge-Maxwell系统的BMO估计","authors":"Dharmendra Kumar ,&nbsp;Swarnendu Sil","doi":"10.1016/j.na.2025.113852","DOIUrl":null,"url":null,"abstract":"<div><div>We prove up to the boundary <span><math><mi>BMO</mi></math></span> estimates for linear Maxwell–Hodge type systems for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>-valued differential <span><math><mi>k</mi></math></span>-forms <span><math><mi>u</mi></math></span> in <span><math><mi>n</mi></math></span> dimensions <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>f</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>g</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mi>ν</mi><mo>∧</mo><mi>u</mi></mrow></math></span> prescribed on <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span> where the coefficient tensors <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></math></span> are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>.</mo></mrow></math></span> Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113852"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients\",\"authors\":\"Dharmendra Kumar ,&nbsp;Swarnendu Sil\",\"doi\":\"10.1016/j.na.2025.113852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove up to the boundary <span><math><mi>BMO</mi></math></span> estimates for linear Maxwell–Hodge type systems for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>-valued differential <span><math><mi>k</mi></math></span>-forms <span><math><mi>u</mi></math></span> in <span><math><mi>n</mi></math></span> dimensions <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>f</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>g</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mi>ν</mi><mo>∧</mo><mi>u</mi></mrow></math></span> prescribed on <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span> where the coefficient tensors <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></math></span> are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>.</mo></mrow></math></span> Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113852\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了n维d∗A(x)du=finΩ,d∗B(x)u=ginΩ的n值微分k型线性Maxwell-Hodge型系统的边界BMO估计,其中ν∧u在∂Ω上规定,其中系数张量A,B只要求是有界可测量的,并且属于一类“BMO的小乘子”。这个类既不包含也不包含在C0中。由于系数允许不连续,通常的科恩冻结技巧不能应用。作为一个应用,我们证明了对于一类不连续各向异性磁导率和介电常数张量,三维时谐麦克斯韦系统的BMO估计成立。系数的正则性假设本质上是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients
We prove up to the boundary BMO estimates for linear Maxwell–Hodge type systems for RN-valued differential k-forms u in n dimensions dA(x)du=finΩ,dB(x)u=ginΩ,with νu prescribed on Ω, where the coefficient tensors A,B are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in C0. Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信