{"title":"具有不连续各向异性系数的Hodge-Maxwell系统的BMO估计","authors":"Dharmendra Kumar , Swarnendu Sil","doi":"10.1016/j.na.2025.113852","DOIUrl":null,"url":null,"abstract":"<div><div>We prove up to the boundary <span><math><mi>BMO</mi></math></span> estimates for linear Maxwell–Hodge type systems for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>-valued differential <span><math><mi>k</mi></math></span>-forms <span><math><mi>u</mi></math></span> in <span><math><mi>n</mi></math></span> dimensions <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>f</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>g</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mi>ν</mi><mo>∧</mo><mi>u</mi></mrow></math></span> prescribed on <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span> where the coefficient tensors <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></math></span> are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>.</mo></mrow></math></span> Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113852"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients\",\"authors\":\"Dharmendra Kumar , Swarnendu Sil\",\"doi\":\"10.1016/j.na.2025.113852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove up to the boundary <span><math><mi>BMO</mi></math></span> estimates for linear Maxwell–Hodge type systems for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>-valued differential <span><math><mi>k</mi></math></span>-forms <span><math><mi>u</mi></math></span> in <span><math><mi>n</mi></math></span> dimensions <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>f</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>g</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mi>ν</mi><mo>∧</mo><mi>u</mi></mrow></math></span> prescribed on <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span> where the coefficient tensors <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></math></span> are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>.</mo></mrow></math></span> Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"260 \",\"pages\":\"Article 113852\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001063\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001063","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients
We prove up to the boundary estimates for linear Maxwell–Hodge type systems for -valued differential -forms in dimensions with prescribed on where the coefficient tensors are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.