渐近凸非自治泛函的局部极小值的处处正则性

IF 1.3 2区 数学 Q1 MATHEMATICS
Junjie Zhang , Shenzhou Zheng
{"title":"渐近凸非自治泛函的局部极小值的处处正则性","authors":"Junjie Zhang ,&nbsp;Shenzhou Zheng","doi":"10.1016/j.na.2025.113869","DOIUrl":null,"url":null,"abstract":"<div><div>We consider everywhere regularity of local vectorial minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> to a class of non-autonomous functionals <span><span><span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Under assumptions that <span><math><mi>Φ</mi></math></span> is an Orlicz function and the coefficient function <span><math><mrow><mi>a</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></mrow></math></span> belongs to <span><math><mrow><mi>V</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>κ</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>κ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where the integrand <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is only asymptotically regular with respect to the integrand <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113869"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Everywhere regularity for local minimizers of asymptotically convex non-autonomous functionals\",\"authors\":\"Junjie Zhang ,&nbsp;Shenzhou Zheng\",\"doi\":\"10.1016/j.na.2025.113869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider everywhere regularity of local vectorial minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> to a class of non-autonomous functionals <span><span><span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Under assumptions that <span><math><mi>Φ</mi></math></span> is an Orlicz function and the coefficient function <span><math><mrow><mi>a</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></mrow></math></span> belongs to <span><math><mrow><mi>V</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>κ</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>κ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where the integrand <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is only asymptotically regular with respect to the integrand <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113869\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001233\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001233","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑局部向量极小值u:Ω→RN(N≥2)对一类非自治泛函J(u,Ω)=∫ΩΦ(a(x)|Du|)dx的处处正则性,其中Ω是RN(N≥2)的有界开子集。在Φ是Orlicz函数,系数函数a:Ω→R属于VMO(Ω)∩L∞(Ω)的假设下,利用摄动法、填洞技术和迭代引理证明了该泛函的每一个局部极小值都是任意Hölder指数α∈(0,1)的处处Hölder连续性。进一步,如果满足系数a∈Cloc0,κ(Ω)且κ∈(0,1),则导出该局部极小器的梯度的局部处处Hölder连续性。作为我们主要定理的推广,对于渐近凸泛函,同样的正则性结论成立如下:F(u,Ω)=∫Ωf(x,Du)dx,其中被积函数F(x,Du)只对被积函数Φ(a(x)|Du|)渐近正则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Everywhere regularity for local minimizers of asymptotically convex non-autonomous functionals
We consider everywhere regularity of local vectorial minimizers u:ΩRN(N2) to a class of non-autonomous functionals J(u,Ω)=ΩΦ(a(x)|Du|)dx,where Ω is a bounded open subset of Rn(n2). Under assumptions that Φ is an Orlicz function and the coefficient function a:ΩR belongs to VMO(Ω)L(Ω), we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent α(0,1) by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient aCloc0,κ(Ω) with κ(0,1) is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: F(u,Ω)=Ωf(x,Du)dx,where the integrand f(x,Du) is only asymptotically regular with respect to the integrand Φ(a(x)|Du|).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信