{"title":"渐近凸非自治泛函的局部极小值的处处正则性","authors":"Junjie Zhang , Shenzhou Zheng","doi":"10.1016/j.na.2025.113869","DOIUrl":null,"url":null,"abstract":"<div><div>We consider everywhere regularity of local vectorial minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> to a class of non-autonomous functionals <span><span><span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Under assumptions that <span><math><mi>Φ</mi></math></span> is an Orlicz function and the coefficient function <span><math><mrow><mi>a</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></mrow></math></span> belongs to <span><math><mrow><mi>V</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>κ</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>κ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where the integrand <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is only asymptotically regular with respect to the integrand <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113869"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Everywhere regularity for local minimizers of asymptotically convex non-autonomous functionals\",\"authors\":\"Junjie Zhang , Shenzhou Zheng\",\"doi\":\"10.1016/j.na.2025.113869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider everywhere regularity of local vectorial minimizers <span><math><mrow><mi>u</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> to a class of non-autonomous functionals <span><span><span><math><mrow><mi>J</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded open subset of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Under assumptions that <span><math><mi>Φ</mi></math></span> is an Orlicz function and the coefficient function <span><math><mrow><mi>a</mi><mo>:</mo><mi>Ω</mi><mo>→</mo><mi>R</mi></mrow></math></span> belongs to <span><math><mrow><mi>V</mi><mi>M</mi><mi>O</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient <span><math><mrow><mi>a</mi><mo>∈</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>0</mn><mo>,</mo><mi>κ</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>κ</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: <span><span><span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where the integrand <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span> is only asymptotically regular with respect to the integrand <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113869\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001233\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001233","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Everywhere regularity for local minimizers of asymptotically convex non-autonomous functionals
We consider everywhere regularity of local vectorial minimizers to a class of non-autonomous functionals where is a bounded open subset of . Under assumptions that is an Orlicz function and the coefficient function belongs to , we prove that every local minimizer of such functional is an everywhere Hölder continuity with any Hölder exponent by employing a perturbation method, hole filling technique and the iteration lemma. Furthermore, if the coefficient with is satisfied, then a local everywhere Hölder continuity of the gradient is derived for such local minimizer. As a generalization of our main theorem, the same regularity conclusion holds for an asymptotically convex functional as follows: where the integrand is only asymptotically regular with respect to the integrand .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.