Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
Weak solutions to the Navier–Stokes equations for steady compressible non-Newtonian fluids 稳定可压缩非牛顿流体的Navier-Stokes方程的弱解
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-12 DOI: 10.1016/j.na.2025.113774
Cosmin Burtea , Maja Szlenk
{"title":"Weak solutions to the Navier–Stokes equations for steady compressible non-Newtonian fluids","authors":"Cosmin Burtea ,&nbsp;Maja Szlenk","doi":"10.1016/j.na.2025.113774","DOIUrl":"10.1016/j.na.2025.113774","url":null,"abstract":"<div><div>We prove the existence of weak solutions for the steady Navier–Stokes system for compressible non-Newtonian fluids on a bounded, two- or three-dimensional domain. Assuming the viscous stress tensor is monotone satisfying a power-law growth with power <span><math><mi>r</mi></math></span> and the pressure is given by <span><math><msup><mrow><mi>ϱ</mi></mrow><mrow><mi>γ</mi></mrow></msup></math></span>, we construct a solution provided that <span><math><mrow><mi>r</mi><mo>&gt;</mo><mfrac><mrow><mn>3</mn><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></mfrac></mrow></math></span> and <span><math><mi>γ</mi></math></span> is sufficiently large, depending on the values of <span><math><mi>r</mi></math></span>. Additionally, we also show the existence for time-discretized model for Herschel–Bulkley fluids, where the viscosity has a singular part.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113774"},"PeriodicalIF":1.3,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial curvature flows for generalized hyperbolic circle packings on surfaces 曲面上广义双曲圆填料的组合曲率流
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-11 DOI: 10.1016/j.na.2025.113773
Te Ba , Chao Zheng
{"title":"Combinatorial curvature flows for generalized hyperbolic circle packings on surfaces","authors":"Te Ba ,&nbsp;Chao Zheng","doi":"10.1016/j.na.2025.113773","DOIUrl":"10.1016/j.na.2025.113773","url":null,"abstract":"<div><div>Generalized hyperbolic circle packings were introduced in Ba et al. (2023) as the generalization of tangential circle packings in hyperbolic background geometry. To find generalized hyperbolic circle packings on surfaces with prescribed total geodesic curvatures, we introduce the combinatorial Calabi flow, the fractional combinatorial Calabi flow and the combinatorial <span><math><mi>p</mi></math></span>th Calabi flow for generalized hyperbolic circle packings on surfaces. We establish several equivalent conditions regarding the longtime behaviors of these combinatorial curvature flows. This provides effective algorithms for finding the generalized hyperbolic circle packings with prescribed total geodesic curvatures on surfaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113773"},"PeriodicalIF":1.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143378782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extinction and non-extinction profiles for the sub-critical fast diffusion equation with weighted source 加权源下亚临界快速扩散方程的消光与非消光曲线
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-08 DOI: 10.1016/j.na.2025.113772
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez
{"title":"Extinction and non-extinction profiles for the sub-critical fast diffusion equation with weighted source","authors":"Razvan Gabriel Iagar,&nbsp;Ana Isabel Muñoz,&nbsp;Ariel Sánchez","doi":"10.1016/j.na.2025.113772","DOIUrl":"10.1016/j.na.2025.113772","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We establish both extinction and non-extinction self-similar profiles for the following fast diffusion equation with a weighted source term &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; posed for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, in the sub-critical range of the fast diffusion equation &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We consider &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;max&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; We show that, on the one hand, positive self-similar solutions at any time &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, in the form &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∼&lt;/mo&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113772"},"PeriodicalIF":1.3,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143349453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence results for a borderline case of a class of p-Laplacian problems 一类p-拉普拉斯问题的边界情况的存在性结果
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-06 DOI: 10.1016/j.na.2025.113762
Anna Maria Candela , Kanishka Perera , Addolorata Salvatore
{"title":"Existence results for a borderline case of a class of p-Laplacian problems","authors":"Anna Maria Candela ,&nbsp;Kanishka Perera ,&nbsp;Addolorata Salvatore","doi":"10.1016/j.na.2025.113762","DOIUrl":"10.1016/j.na.2025.113762","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The aim of this paper is investigating the existence of at least one nontrivial bounded solution of the new asymptotically “linear” problem &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;div&lt;/mo&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mtext&gt;,&lt;/mtext&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;on&lt;/mtext&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mtext&gt;,&lt;/mtext&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is a bounded domain in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, both the coefficients &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; are in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and far away from 0, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and the “perturbation” term &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a Carathéodory function on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; which grows as &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/m","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113762"},"PeriodicalIF":1.3,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143265967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variational integrals on Hessian spaces: Partial regularity for critical points Hessian空间上的变分积分:临界点的部分正则性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-05 DOI: 10.1016/j.na.2025.113760
Arunima Bhattacharya , Anna Skorobogatova
{"title":"Variational integrals on Hessian spaces: Partial regularity for critical points","authors":"Arunima Bhattacharya ,&nbsp;Anna Skorobogatova","doi":"10.1016/j.na.2025.113760","DOIUrl":"10.1016/j.na.2025.113760","url":null,"abstract":"<div><div>We develop regularity theory for critical points of variational integrals defined on Hessian spaces of functions on open, bounded subdomains of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, under compactly supported variations. We show that for smooth convex functionals, a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>∞</mi></mrow></msup></math></span> critical point with bounded Hessian is smooth provided that its Hessian has a small bounded mean oscillation (BMO). We deduce that the interior singular set of a critical point has Hausdorff dimension at most <span><math><mrow><mi>n</mi><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, for some <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. We state some applications of our results to variational problems in Lagrangian geometry. Finally, we use the Hamiltonian stationary equation to demonstrate the importance of our assumption on the a priori regularity of the critical point.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113760"},"PeriodicalIF":1.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143268147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness” [Nonlinear Anal. 101 (2014) 98–112] “具有有限平滑的多线性和多参数傅立叶乘子算子的Hörmander型定理”的更正[非线性分析]. 101 (2014)98-112]
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-03 DOI: 10.1016/j.na.2025.113750
Jiao Chen , Guozhen Lu
{"title":"Corrigendum to “Hörmander type theorems for multi-linear and multi-parameter Fourier multiplier operators with limited smoothness” [Nonlinear Anal. 101 (2014) 98–112]","authors":"Jiao Chen ,&nbsp;Guozhen Lu","doi":"10.1016/j.na.2025.113750","DOIUrl":"10.1016/j.na.2025.113750","url":null,"abstract":"","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113750"},"PeriodicalIF":1.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local uniqueness of minimizers for Choquard type equations Choquard型方程最小解的局部唯一性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-03 DOI: 10.1016/j.na.2025.113764
Lintao Liu , Kaimin Teng , Shuai Yuan
{"title":"Local uniqueness of minimizers for Choquard type equations","authors":"Lintao Liu ,&nbsp;Kaimin Teng ,&nbsp;Shuai Yuan","doi":"10.1016/j.na.2025.113764","DOIUrl":"10.1016/j.na.2025.113764","url":null,"abstract":"<div><div>We consider <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-constraint minimizers of the Choquard energy functional with a trapping potential <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. It is known that positive minimizers exist if and only if the parameter <span><math><mi>a</mi></math></span> satisfies <span><math><mrow><mi>a</mi><mo>&lt;</mo><msup><mrow><mi>a</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>≔</mo><msubsup><mrow><mo>‖</mo><mi>Q</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></math></span>, where <span><math><mi>Q</mi></math></span> is the unique positive radial solution of <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. This paper focuses on the local uniqueness of minimizers by using energy estimates, blow-up analysis and establishing the Pohozăev identity.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113764"},"PeriodicalIF":1.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143163859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fujita exponent and blow-up rate for a mixed local and nonlocal heat equation 局部和非局部混合热方程的Fujita指数和爆破率
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-03 DOI: 10.1016/j.na.2025.113761
Leandro M. Del Pezzo , Raúl Ferreira
{"title":"Fujita exponent and blow-up rate for a mixed local and nonlocal heat equation","authors":"Leandro M. Del Pezzo ,&nbsp;Raúl Ferreira","doi":"10.1016/j.na.2025.113761","DOIUrl":"10.1016/j.na.2025.113761","url":null,"abstract":"<div><div>In this paper we consider the blow-up problem for a mixed local-nonlocal diffusion operator, <span><span><span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>a</mi><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>b</mi><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup></mrow></math></span></span></span>We show that the Fujita exponent is given by the nonlocal part, <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>+</mo><mn>2</mn><mi>s</mi><mo>/</mo><mi>N</mi></mrow></math></span>. We also determinate, in some cases, the blow-up rate.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113761"},"PeriodicalIF":1.3,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extremal functions for twisted sharp Sobolev inequalities with lower order remainder terms 具有低阶余项的扭曲尖锐Sobolev不等式的极值函数
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-02-01 DOI: 10.1016/j.na.2025.113758
Olivier Druet , Emmanuel Hebey
{"title":"Extremal functions for twisted sharp Sobolev inequalities with lower order remainder terms","authors":"Olivier Druet ,&nbsp;Emmanuel Hebey","doi":"10.1016/j.na.2025.113758","DOIUrl":"10.1016/j.na.2025.113758","url":null,"abstract":"<div><div>We prove existence of extremal functions and compactness of the set of extremal functions for twisted sharp 4-dimensional Sobolev inequalities with lower order remainder terms.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113758"},"PeriodicalIF":1.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal differentiability sets in Laakso space Laakso空间中的全称可微集
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-01-31 DOI: 10.1016/j.na.2025.113752
Sylvester Eriksson-Bique , Andrea Pinamonti , Gareth Speight
{"title":"Universal differentiability sets in Laakso space","authors":"Sylvester Eriksson-Bique ,&nbsp;Andrea Pinamonti ,&nbsp;Gareth Speight","doi":"10.1016/j.na.2025.113752","DOIUrl":"10.1016/j.na.2025.113752","url":null,"abstract":"<div><div>We show that there exists a family of mutually singular doubling measures on Laakso space with respect to which real-valued Lipschitz functions are almost everywhere differentiable. This implies that there exists a measure zero universal differentiability set in Laakso space. Additionally, we show that each of the measures constructed supports a Poincaré inequality.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113752"},"PeriodicalIF":1.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143162487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信