Rene Cabrera , Maria Pia Gualdani , Nestor Guillen
{"title":"Regularization estimates of the Landau–Coulomb diffusion","authors":"Rene Cabrera , Maria Pia Gualdani , Nestor Guillen","doi":"10.1016/j.na.2024.113695","DOIUrl":"10.1016/j.na.2024.113695","url":null,"abstract":"<div><div>The Landau–Coulomb equation is an important model in plasma physics featuring both nonlinear diffusion and reaction terms. In this manuscript we focus on the diffusion operator within the equation by dropping the potentially nefarious reaction term altogether. We show that the diffusion operator in the Landau–Coulomb equation provides a much stronger <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></mrow></math></span> rate of regularization than its linear counterpart, the Laplace operator. The result is made possible by a nonlinear functional inequality of Gressman, Krieger, and Strain together with a De Giorgi iteration. This stronger regularization rate illustrates the importance of the nonlinear nature of the diffusion in the analysis of the Landau equation and raises the question of determining whether this rate also happens for the Landau–Coulomb equation itself.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113695"},"PeriodicalIF":1.3,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the p-torsional rigidity of combinatorial graphs","authors":"Patrizio Bifulco, Delio Mugnolo","doi":"10.1016/j.na.2024.113694","DOIUrl":"10.1016/j.na.2024.113694","url":null,"abstract":"<div><div>We study the <span><math><mi>p</mi></math></span>-<em>torsion function</em> and the corresponding <span><math><mi>p</mi></math></span>-<em>torsional rigidity</em> associated with <span><math><mi>p</mi></math></span>-Laplacians and, more generally, <span><math><mi>p</mi></math></span>-Schrödinger operators, for <span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>, on possibly infinite combinatorial graphs. We present sufficient criteria for the existence of a summable <span><math><mi>p</mi></math></span>-torsion function and we derive several upper and lower bounds for the <span><math><mi>p</mi></math></span>-torsional rigidity. Our methods are mostly based on novel surgery principles. As an application, we also find some new estimates on the bottom of the spectrum of the <span><math><mi>p</mi></math></span>-Laplacian with Dirichlet conditions, thus complementing some results recently obtained in Mazón and Toledo (2023) in a more general setting. Finally, we prove a Kohler–Jobin inequality for combinatorial graphs (for <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span>): to the best of our knowledge, graphs thus become the third ambient where a Kohler–Jobin inequality is known to hold.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113694"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On existence for some fully nonlinear equations of Krylov-type arising in conformal geometry","authors":"Ya Ding, Yan He, Jun Liu","doi":"10.1016/j.na.2024.113709","DOIUrl":"10.1016/j.na.2024.113709","url":null,"abstract":"<div><div>This paper considers a class of fully nonlinear equations on Riemannian manifolds that arise in conformal geometry. Based on the a priori estimates and the blow-up analysis, we obtain the existence theorems for these equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113709"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal decay and regularity for a Thomas–Fermi type variational problem","authors":"Damiano Greco","doi":"10.1016/j.na.2024.113698","DOIUrl":"10.1016/j.na.2024.113698","url":null,"abstract":"<div><div>We study existence and qualitative properties of the minimizers for a Thomas–Fermi type energy functional defined by <span><span><span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>ρ</mi><mo>)</mo></mrow><mo>≔</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>q</mi></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><msup><mrow><mrow><mo>|</mo><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msub><mrow><mo>∬</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><mfrac><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>ρ</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mrow><mrow><mi>d</mi><mo>−</mo><mi>α</mi></mrow></msup></mrow></mfrac><mi>d</mi><mi>x</mi><mi>d</mi><mi>y</mi><mo>−</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>d</mi><mo>∈</mo><mrow><mo>[</mo><mn>2</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><mrow><mo>(</mo><mrow><mfrac><mrow><mn>2</mn><mi>d</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>α</mi></mrow></mfrac><mo>,</mo><mi>∞</mi></mrow><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>V</mi></math></span> is a potential. Under broad assumptions on <span><math><mi>V</mi></math></span> we establish existence, uniqueness and qualitative properties such as positivity, regularity and decay at infinity of the global minimizer. The decay at infinity depends in a non-trivial way on the choice of <span><math><mi>α</mi></math></span> and <span><math><mi>q</mi></math></span>. If <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>></mo><mn>2</mn></mrow></math></span> the global minimizer is proved to be positive under mild regularity assumptions on <span><math><mi>V</mi></math></span>, unlike in the local case <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span> where the global minimizer has typically compact support. We also show that if <span><math><mi>V</mi></math></span> decays sufficiently fast the global minimizer is sign-changing even if <span><math><mi>V</mi></math></span> is non-negative. In such regi","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113698"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blow-up estimates and a priori bounds for the positive solutions of a class of superlinear indefinite elliptic problems","authors":"Julián López-Gómez , Juan Carlos Sampedro","doi":"10.1016/j.na.2024.113693","DOIUrl":"10.1016/j.na.2024.113693","url":null,"abstract":"<div><div>In this paper we find out some new blow-up estimates for the positive explosive solutions of a paradigmatic class of elliptic boundary value problems of superlinear indefinite type. These estimates are obtained by combining the scaling technique of Gidas–Spruck together with a generalized De Giorgi–Moser weak Harnack inequality found, very recently, by Sirakov (2020; 2022). In a further step, based on a comparison result of Amann and López-Gómez (1998), we will show how these bounds provide us with some sharp a priori estimates for the classical positive solutions of a wide variety of superlinear indefinite problems. It turns out that this is the first general result where the decay rates of the potential in front of the nonlinearity (<span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> in <span><span>(1.1)</span></span>) do not play any role for getting a priori bounds for the positive solutions when <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113693"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"p-Wasserstein barycenters","authors":"Camilla Brizzi , Gero Friesecke , Tobias Ried","doi":"10.1016/j.na.2024.113687","DOIUrl":"10.1016/j.na.2024.113687","url":null,"abstract":"<div><div>We study barycenters of <span><math><mi>N</mi></math></span> probability measures on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with respect to the <span><math><mi>p</mi></math></span>-Wasserstein metric (<span><math><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>∞</mi></mrow></math></span>). We prove that</div><div>– <span><math><mi>p</mi></math></span>-Wasserstein barycenters of absolutely continuous measures are unique, and again absolutely continuous</div><div>– <span><math><mi>p</mi></math></span>-Wasserstein barycenters admit a multi-marginal formulation</div><div>– the optimal multi-marginal plan is unique and of Monge form if the marginals are</div><div>absolutely continuous, and its support has an explicit parametrization as a graph over any</div><div>marginal space. This extends the Agueh–Carlier theory of Wasserstein barycenters <span><span>[1]</span></span> to exponents <span><math><mrow><mi>p</mi><mo>≠</mo><mn>2</mn></mrow></math></span>. A key ingredient is a quantitative injectivity estimate for the (highly non-injective) map from <span><math><mi>N</mi></math></span>-point configurations to their <span><math><mi>p</mi></math></span>-barycenter on the support of an optimal multi-marginal plan. We also discuss the statistical meaning of <span><math><mi>p</mi></math></span>-Wasserstein barycenters in one dimension.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113687"},"PeriodicalIF":1.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Measures in the dual of BV: perimeter bounds and relations with divergence-measure fields","authors":"Giovanni E. Comi , Gian Paolo Leonardi","doi":"10.1016/j.na.2024.113686","DOIUrl":"10.1016/j.na.2024.113686","url":null,"abstract":"<div><div>We analyze some properties of the measures in the dual of the space <span><math><mrow><mi>B</mi><mi>V</mi></mrow></math></span>, by considering (signed) Radon measures satisfying a perimeter bound condition, which means that the absolute value of the measure of a set is controlled by the perimeter of the set itself, and whose total variations also belong to the dual of <span><math><mrow><mi>B</mi><mi>V</mi></mrow></math></span>. We exploit and refine the results of Cong Phuc and Torres (2017), in particular exploring the relation with divergence-measure fields and proving the stability of the perimeter bound from sets to <span><math><mrow><mi>B</mi><mi>V</mi></mrow></math></span> functions under a suitable approximation of the given measure. As an important tool, we obtain a refinement of Anzellotti-Giaquinta approximation for <span><math><mrow><mi>B</mi><mi>V</mi></mrow></math></span> functions, which is of separate interest in itself and, in the context of Anzellotti’s pairing theory for divergence-measure fields, implies a new way of approximating <span><math><mi>λ</mi></math></span>-pairings, as well as new bounds for their total variation. These results are also relevant due to their application in the study of weak solutions to the non-parametric prescribed mean curvature equation with measure data, which is explored in a subsequent work.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113686"},"PeriodicalIF":1.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and nonexistence of minimizers for classical capillarity problems in presence of nonlocal repulsion and gravity","authors":"Giulio Pascale","doi":"10.1016/j.na.2024.113685","DOIUrl":"10.1016/j.na.2024.113685","url":null,"abstract":"<div><div>We investigate, under a volume constraint and among sets contained in a Euclidean half-space, the minimization problem of an energy functional given by the sum of a capillarity perimeter, a nonlocal interaction term and a gravitational potential energy. The capillarity perimeter assigns a constant weight to the portion of the boundary touching the boundary of the half-space. The nonlocal term is represented by a double integral of a positive kernel <span><math><mi>g</mi></math></span>, while the gravitational term is represented by the integral of a positive potential <span><math><mi>G</mi></math></span>.</div><div>We first establish existence of volume-constrained minimizers in the small mass regime, together with several qualitative properties of minimizers. The existence result holds for rather general choices of kernels in the nonlocal interaction term, including attractive–repulsive ones. When the nonlocal kernel <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>/</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>β</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>, we also obtain nonexistence of volume constrained minimizers in the large mass regime. Finally, we prove a generalized existence result of minimizers holding for all masses and general nonlocal interaction terms, meaning that the infimum of the problem is realized by a finite disjoint union of sets thought located at “infinite distance” one from the other.</div><div>These results stem from an application of quantitative isoperimetric inequalities for the capillarity problem in a half-space.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113685"},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher-order Sobolev embeddings into spaces of Campanato and Morrey type","authors":"Paola Cavaliere , Andrea Cianchi , Luboš Pick , Lenka Slavíková","doi":"10.1016/j.na.2024.113678","DOIUrl":"10.1016/j.na.2024.113678","url":null,"abstract":"<div><div>Necessary and sufficient conditions are offered for Sobolev type spaces built on rearrangement-invariant spaces to be continuously embedded into (generalized) Campanato and Morrey spaces on open subsets of the <span><math><mi>n</mi></math></span>-dimensional Euclidean space. As a consequence, the optimal target and domain spaces in the relevant embeddings are identified. Our general criteria are implemented to derive sharp embeddings in the class of Orlicz-Sobolev spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113678"},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radially symmetric σ2,p-harmonic maps from n-dimensional annuli into sphere","authors":"M.S. Shahrokhi-Dehkordi","doi":"10.1016/j.na.2024.113682","DOIUrl":"10.1016/j.na.2024.113682","url":null,"abstract":"<div><div>Consider a bounded Lipschitz domain <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> and the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><span><span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>u</mi><mo>;</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mrow><mo>|</mo></mrow><mo>∇</mo><mi>u</mi><mo>∧</mo><mo>∇</mo><msup><mrow><mi>u</mi><mrow><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mrow><mi>p</mi><mo>∈</mo><mo>]</mo></mrow><mn>1</mn><mo>,</mo><mrow><mi>∞</mi><mo>]</mo></mrow></mrow></math></span>, defined over the space of admissible Sobolev maps <span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow><mo>≔</mo><mrow><mo>{</mo><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>,</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mo>:</mo><mi>u</mi><msub><mrow><mo>|</mo></mrow><mrow><mi>∂</mi><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><mo>=</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow></mfrac></mrow><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>In this paper, we investigate the multiplicity and uniqueness of extremals and strong local minimisers of the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></mrow></msub><mrow><mo>[</mo><mi>⋅</mi><mo>,</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>]</mo></mrow></mrow></math></span> in <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Our focus is on the space of admissible Sobolev maps and a topological class of maps known as spherical twists in connection with the Euler–Lagrange equations associated with the <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msub></math></span>-energy functional over <span><math><mro","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113682"},"PeriodicalIF":1.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}