曲面上广义双曲圆填料的组合曲率流

IF 1.3 2区 数学 Q1 MATHEMATICS
Te Ba , Chao Zheng
{"title":"曲面上广义双曲圆填料的组合曲率流","authors":"Te Ba ,&nbsp;Chao Zheng","doi":"10.1016/j.na.2025.113773","DOIUrl":null,"url":null,"abstract":"<div><div>Generalized hyperbolic circle packings were introduced in Ba et al. (2023) as the generalization of tangential circle packings in hyperbolic background geometry. To find generalized hyperbolic circle packings on surfaces with prescribed total geodesic curvatures, we introduce the combinatorial Calabi flow, the fractional combinatorial Calabi flow and the combinatorial <span><math><mi>p</mi></math></span>th Calabi flow for generalized hyperbolic circle packings on surfaces. We establish several equivalent conditions regarding the longtime behaviors of these combinatorial curvature flows. This provides effective algorithms for finding the generalized hyperbolic circle packings with prescribed total geodesic curvatures on surfaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113773"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial curvature flows for generalized hyperbolic circle packings on surfaces\",\"authors\":\"Te Ba ,&nbsp;Chao Zheng\",\"doi\":\"10.1016/j.na.2025.113773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Generalized hyperbolic circle packings were introduced in Ba et al. (2023) as the generalization of tangential circle packings in hyperbolic background geometry. To find generalized hyperbolic circle packings on surfaces with prescribed total geodesic curvatures, we introduce the combinatorial Calabi flow, the fractional combinatorial Calabi flow and the combinatorial <span><math><mi>p</mi></math></span>th Calabi flow for generalized hyperbolic circle packings on surfaces. We establish several equivalent conditions regarding the longtime behaviors of these combinatorial curvature flows. This provides effective algorithms for finding the generalized hyperbolic circle packings with prescribed total geodesic curvatures on surfaces.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"255 \",\"pages\":\"Article 113773\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000288\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000288","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Ba et al.(2023)将广义双曲圆填料作为双曲背景几何中切圆填料的推广引入。为了寻找具有一定总测地线曲率的曲面上的广义双曲圆填料,我们引入了曲面上广义双曲圆填料的组合Calabi流、分数组合Calabi流和组合pth Calabi流。我们建立了这些组合曲率流的长期行为的几个等价条件。这为寻找曲面上具有规定总测地线曲率的广义双曲圆填料提供了有效的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial curvature flows for generalized hyperbolic circle packings on surfaces
Generalized hyperbolic circle packings were introduced in Ba et al. (2023) as the generalization of tangential circle packings in hyperbolic background geometry. To find generalized hyperbolic circle packings on surfaces with prescribed total geodesic curvatures, we introduce the combinatorial Calabi flow, the fractional combinatorial Calabi flow and the combinatorial pth Calabi flow for generalized hyperbolic circle packings on surfaces. We establish several equivalent conditions regarding the longtime behaviors of these combinatorial curvature flows. This provides effective algorithms for finding the generalized hyperbolic circle packings with prescribed total geodesic curvatures on surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信