Variational integrals on Hessian spaces: Partial regularity for critical points

IF 1.3 2区 数学 Q1 MATHEMATICS
Arunima Bhattacharya , Anna Skorobogatova
{"title":"Variational integrals on Hessian spaces: Partial regularity for critical points","authors":"Arunima Bhattacharya ,&nbsp;Anna Skorobogatova","doi":"10.1016/j.na.2025.113760","DOIUrl":null,"url":null,"abstract":"<div><div>We develop regularity theory for critical points of variational integrals defined on Hessian spaces of functions on open, bounded subdomains of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, under compactly supported variations. We show that for smooth convex functionals, a <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>∞</mi></mrow></msup></math></span> critical point with bounded Hessian is smooth provided that its Hessian has a small bounded mean oscillation (BMO). We deduce that the interior singular set of a critical point has Hausdorff dimension at most <span><math><mrow><mi>n</mi><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>, for some <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>. We state some applications of our results to variational problems in Lagrangian geometry. Finally, we use the Hamiltonian stationary equation to demonstrate the importance of our assumption on the a priori regularity of the critical point.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113760"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2500015X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop regularity theory for critical points of variational integrals defined on Hessian spaces of functions on open, bounded subdomains of Rn, under compactly supported variations. We show that for smooth convex functionals, a W2, critical point with bounded Hessian is smooth provided that its Hessian has a small bounded mean oscillation (BMO). We deduce that the interior singular set of a critical point has Hausdorff dimension at most np0, for some p0(2,3). We state some applications of our results to variational problems in Lagrangian geometry. Finally, we use the Hamiltonian stationary equation to demonstrate the importance of our assumption on the a priori regularity of the critical point.
Hessian空间上的变分积分:临界点的部分正则性
在紧支持变分下,给出了在开放有界子域上的函数的Hessian空间上定义的变分积分的临界点的正则性理论。我们证明了对于光滑凸泛函,如果一个具有有界Hessian的W2,∞临界点具有小的有界平均振荡(BMO),则该临界点是光滑的。我们推导出对于某些p0∈(2,3),临界点的内部奇异集的Hausdorff维数不超过n−p0。我们叙述了我们的结果在拉格朗日几何变分问题中的一些应用。最后,我们用哈密顿平稳方程来证明我们对临界点的先验正则性的假设的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信