Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
Unconditional flocking for weak solutions to self-organized systems of Euler-type with all-to-all interaction kernel 具有全对全相互作用内核的欧拉型自组织系统弱解的无条件成群问题
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-24 DOI: 10.1016/j.na.2024.113576
Debora Amadori , Cleopatra Christoforou
{"title":"Unconditional flocking for weak solutions to self-organized systems of Euler-type with all-to-all interaction kernel","authors":"Debora Amadori ,&nbsp;Cleopatra Christoforou","doi":"10.1016/j.na.2024.113576","DOIUrl":"https://doi.org/10.1016/j.na.2024.113576","url":null,"abstract":"<div><p>We consider a hydrodynamic model of flocking-type with all-to-all interaction kernel in one-space dimension and establish that the global entropy weak solutions, constructed in Amadori and Christoforou (2022) to the Cauchy problem for any <span><math><mrow><mi>B</mi><mi>V</mi></mrow></math></span> initial data that has finite total mass confined in a bounded interval and initial density uniformly positive therein, admit unconditional time-asymptotic flocking without any further assumptions on the initial data. In addition, we show that the convergence to a flocking profile occurs exponentially fast.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24000956/pdfft?md5=6a93db7ec31a9b1dcb1acab286d942f3&pid=1-s2.0-S0362546X24000956-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The anisotropic convexity of domains and the boundary estimate for two Monge–Ampère equations 域的各向异性凸性和两个蒙日-安培方程的边界估计
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-23 DOI: 10.1016/j.na.2024.113580
Ruosi Chen , Huaiyu Jian
{"title":"The anisotropic convexity of domains and the boundary estimate for two Monge–Ampère equations","authors":"Ruosi Chen ,&nbsp;Huaiyu Jian","doi":"10.1016/j.na.2024.113580","DOIUrl":"https://doi.org/10.1016/j.na.2024.113580","url":null,"abstract":"<div><p>We study the exact effect of the anisotropic convexity of domains on the boundary estimate for two Monge–Ampère Equations: one is singular which is from the proper affine hyperspheres with constant mean curvature; the other is degenerate which is from the Monge–Ampère eigenvalue problem. As a result, we obtain the sharp boundary estimates and the optimal global Hölder regularity for the two equations.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodic fractional Ambrosetti–Prodi for one-dimensional problem with drift 有漂移的一维问题的周期分式安布罗塞蒂-普罗迪
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-22 DOI: 10.1016/j.na.2024.113563
B. Barrios , L. Carrero , A. Quass
{"title":"Periodic fractional Ambrosetti–Prodi for one-dimensional problem with drift","authors":"B. Barrios ,&nbsp;L. Carrero ,&nbsp;A. Quass","doi":"10.1016/j.na.2024.113563","DOIUrl":"https://doi.org/10.1016/j.na.2024.113563","url":null,"abstract":"<div><p>We prove Ambrosetti–Prodi type results for periodic solutions of some one-dimensional nonlinear problems that can have drift term whose principal operator is the fractional Laplacian of order <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. We establish conditions for the existence and nonexistence of solutions of those problems. The proofs of the existence results are based on the sub-supersolution method combined with topological degree type arguments. We also obtain a priori bounds in order to get multiplicity results. We also prove that the solutions are <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> under some regularity assumptions in the nonlinearities, that is, the solutions of the mentioned equations are classical. We finish the work obtaining Ambrosetti-Prodi-type results for a problem with singular nonlinearities.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141083919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive and sign-changing stationary solutions of degenerate logistic type equations 退化逻辑型方程的正解和符号变化静态解
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-20 DOI: 10.1016/j.na.2024.113575
Maristela Cardoso , Flávia Furtado , Liliane Maia
{"title":"Positive and sign-changing stationary solutions of degenerate logistic type equations","authors":"Maristela Cardoso ,&nbsp;Flávia Furtado ,&nbsp;Liliane Maia","doi":"10.1016/j.na.2024.113575","DOIUrl":"https://doi.org/10.1016/j.na.2024.113575","url":null,"abstract":"<div><p>In this work we study the existence and uniqueness of a positive, as well as a sign-changing steady-state solution of the degenerate logistic equation with a non-homogeneous superlinear term. Our outcome on a solution that changes sign, defined in higher dimensions, contribute to the existing literature of a few results for the problem, mostly developed in one dimension. We apply variational techniques, in particular the problem constrained to the Nehari manifold, and investigate how it changes as the parameter <span><math><mi>λ</mi></math></span> in the equation or the function <span><math><mi>b</mi></math></span> vary, affecting the existence and non-existence of solutions of the elliptic problem.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite transition solutions for an Allen–Cahn equation 艾伦-卡恩方程的无限过渡解
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-20 DOI: 10.1016/j.na.2024.113572
Wen-Long Li
{"title":"Infinite transition solutions for an Allen–Cahn equation","authors":"Wen-Long Li","doi":"10.1016/j.na.2024.113572","DOIUrl":"https://doi.org/10.1016/j.na.2024.113572","url":null,"abstract":"<div><p>We give another proof of a theorem of Rabinowitz and Stredulinsky obtaining infinite transition solutions for an Allen–Cahn equation. Rabinowitz and Stredulinsky have constructed infinite transition solutions as locally minimal solutions, but it is still an interesting question to establish these solutions by other method. Our result may attract the interest of constructing solutions with the shape of locally minimal solutions of Rabinowitz and Stredulinsky for problems defined on descrete group.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximation, regularity and positivity preservation on Riemannian manifolds 黎曼流形上的逼近、正则性和实在性保持
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-18 DOI: 10.1016/j.na.2024.113570
Stefano Pigola, Daniele Valtorta, Giona Veronelli
{"title":"Approximation, regularity and positivity preservation on Riemannian manifolds","authors":"Stefano Pigola,&nbsp;Daniele Valtorta,&nbsp;Giona Veronelli","doi":"10.1016/j.na.2024.113570","DOIUrl":"https://doi.org/10.1016/j.na.2024.113570","url":null,"abstract":"<div><p>The paper focuses on the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-Positivity Preservation property (<span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-PP for short) on a Riemannian manifold <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></math></span>. It states that any <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> function <span><math><mi>u</mi></math></span> with <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>+</mo><mi>∞</mi></mrow></math></span>, which solves <span><math><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mi>u</mi><mo>≥</mo><mn>0</mn></mrow></math></span> on <span><math><mi>M</mi></math></span> in the sense of distributions must be non-negative. Our main result is that the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-PP holds if (the possibly incomplete) <span><math><mi>M</mi></math></span> has a finite number of ends with respect to some compact domain, each of which is <span><math><mi>q</mi></math></span>-parabolic for some, possibly different, values <span><math><mrow><mn>2</mn><mi>p</mi><mo>/</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mo>+</mo><mi>∞</mi></mrow></math></span>. When <span><math><mrow><mi>p</mi><mo>=</mo><mn>2</mn></mrow></math></span>, since <span><math><mi>∞</mi></math></span>-parabolicity coincides with geodesic completeness, our result settles in the affirmative a conjecture by M. Braverman, O. Milatovic and M. Shubin in 2002. On the other hand, we also show that the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-PP is stable by removing from a complete manifold a possibly singular set with Hausdorff co-dimension strictly larger than <span><math><mrow><mn>2</mn><mi>p</mi><mo>/</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or with a uniform Minkowski-type upper estimate of order <span><math><mrow><mn>2</mn><mi>p</mi><mo>/</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. The threshold value <span><math><mrow><mn>2</mn><mi>p</mi><mo>/</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> is sharp as we show that when the Hausdorff co-dimension of the removed set is strictly smaller, then the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-PP fails. This gives a rather complete picture. The tools developed to carry out our investigations include smooth monotonic approximation and consequent regularity results for subharmonic distributions, a manifold version of the Brezis–Kato inequality, Liouville-type theorems in low regularity, removable singularities results for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141068219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and regularity for solutions of quasilinear degenerate elliptic systems 准线性退化椭圆系统解的存在性和正则性
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-16 DOI: 10.1016/j.na.2024.113562
Patrizia Di Gironimo , Francesco Leonetti , Marta Macrì
{"title":"Existence and regularity for solutions of quasilinear degenerate elliptic systems","authors":"Patrizia Di Gironimo ,&nbsp;Francesco Leonetti ,&nbsp;Marta Macrì","doi":"10.1016/j.na.2024.113562","DOIUrl":"https://doi.org/10.1016/j.na.2024.113562","url":null,"abstract":"<div><p>The existence of a solution to a quasilinear system of degenerate equations is proved, assuming that the datum has an intermediate degree of summability and that the off-diagonal coefficients have a support contained in a crossed staircase set. The support required in this paper is larger than the one assumed in a previous work.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsteady non-Newtonian fluid flows with boundary conditions of friction type: The case of shear thinning fluids 具有摩擦型边界条件的非牛顿非稳态流体流动:剪切稀化流体的情况
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-14 DOI: 10.1016/j.na.2024.113555
Mahdi Boukrouche , Hanene Debbiche , Laetitia Paoli
{"title":"Unsteady non-Newtonian fluid flows with boundary conditions of friction type: The case of shear thinning fluids","authors":"Mahdi Boukrouche ,&nbsp;Hanene Debbiche ,&nbsp;Laetitia Paoli","doi":"10.1016/j.na.2024.113555","DOIUrl":"https://doi.org/10.1016/j.na.2024.113555","url":null,"abstract":"<div><p>Following the previous part of our study on unsteady non-Newtonian fluid flows with boundary conditions of friction type we consider in this paper the case of pseudo-plastic (shear thinning) fluids. The problem is described by a <span><math><mi>p</mi></math></span>-Laplacian non-stationary Stokes system with <span><math><mrow><mi>p</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span> and we assume that the fluid is subjected to mixed boundary conditions, namely non-homogeneous Dirichlet boundary conditions on a part of the boundary and a slip fluid-solid interface law of friction type on another part of the boundary. Hence the fluid velocity should belong to a subspace of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><mrow><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>Ω</mi></math></span> is the flow domain and <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, and satisfy a non-linear parabolic variational inequality. In order to solve this problem we introduce first a vanishing viscosity technique which allows us to consider an auxiliary problem formulated in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mrow><mo>(</mo><mrow><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><mrow><mo>(</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>&gt;</mo><mn>2</mn></mrow></math></span> the conjugate number of <span><math><mi>p</mi></math></span> and to use the existence results already established in Boukrouche et al. (2020). Then we apply both compactness arguments and a fixed point method to prove the existence of a solution to our original fluid flow problem.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140918381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fick’s law selects the Neumann boundary condition 菲克定律选择诺依曼边界条件
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-13 DOI: 10.1016/j.na.2024.113561
Danielle Hilhorst , Seung-Min Kang , Ho-Youn Kim , Yong-Jung Kim
{"title":"Fick’s law selects the Neumann boundary condition","authors":"Danielle Hilhorst ,&nbsp;Seung-Min Kang ,&nbsp;Ho-Youn Kim ,&nbsp;Yong-Jung Kim","doi":"10.1016/j.na.2024.113561","DOIUrl":"https://doi.org/10.1016/j.na.2024.113561","url":null,"abstract":"<div><p>We show that the Neumann boundary condition appears along the boundary of an inner domain when the diffusivity of the outer domain goes to zero. We take Fick’s diffusion law with a bistable reaction function, and the diffusivity is 1 in the inner domain and <span><math><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> in the outer domain. The convergence of the solution as <span><math><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></math></span> is shown, where the limit satisfies the Neumann boundary condition along the boundary of an inner domain. This observation says that the Neumann boundary condition is a natural choice of boundary conditions when Fick’s diffusion law is taken.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations 关于扰动下分数拉普拉斯特征值多重性持续性的说明
IF 1.4 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-05-11 DOI: 10.1016/j.na.2024.113558
Marco Ghimenti , Anna Maria Micheletti , Angela Pistoia
{"title":"A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations","authors":"Marco Ghimenti ,&nbsp;Anna Maria Micheletti ,&nbsp;Angela Pistoia","doi":"10.1016/j.na.2024.113558","DOIUrl":"https://doi.org/10.1016/j.na.2024.113558","url":null,"abstract":"<div><p>We consider the eigenvalue problem for the fractional Laplacian <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span>, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, in a bounded domain <span><math><mi>Ω</mi></math></span> with Dirichlet boundary condition. A recent result (see Fall et al., 2023) states that, under generic small perturbations of the coefficient of the equation or of the domain <span><math><mi>Ω</mi></math></span>, all the eigenvalues are simple. In this paper we give a condition for which a perturbation of the coefficient or of the domain preserves the multiplicity of a given eigenvalue. Also, in the case of an eigenvalue of multiplicity <span><math><mrow><mi>ν</mi><mo>=</mo><mn>2</mn></mrow></math></span> we prove that the set of perturbations of the coefficients which preserve the multiplicity is a smooth manifold of codimension 2 in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140906180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信