Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
The hydrostatic approximation of the Boussinesq equations with rotation in a thin domain 薄域中带有旋转的布森斯克方程的静力学近似值
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-11-02 DOI: 10.1016/j.na.2024.113688
Xueke Pu , Wenli Zhou
{"title":"The hydrostatic approximation of the Boussinesq equations with rotation in a thin domain","authors":"Xueke Pu ,&nbsp;Wenli Zhou","doi":"10.1016/j.na.2024.113688","DOIUrl":"10.1016/j.na.2024.113688","url":null,"abstract":"<div><div>In this paper, the global existence of strong solutions to the primitive equations with only horizontal viscosity and diffusivity is established under the assumption of initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> with additional regularity <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>. Moreover, we prove that the scaled Boussinesq equations with rotation strongly converge to the primitive equations with only horizontal viscosity and diffusivity, with the convergence rate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mo>min</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mi>β</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>γ</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mo>&lt;</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>&lt;</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, in the cases of initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span> with <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> and initial data <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, respectively, as the aspect ratio <span><math><mi>λ</mi></math></span> goes to zero.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113688"},"PeriodicalIF":1.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial gradient regularity for parabolic systems with degenerate diffusion and Hölder continuous coefficients 具有退化扩散和赫尔德连续系数的抛物线系统的部分梯度正则性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-31 DOI: 10.1016/j.na.2024.113691
Fabian Bäuerlein
{"title":"Partial gradient regularity for parabolic systems with degenerate diffusion and Hölder continuous coefficients","authors":"Fabian Bäuerlein","doi":"10.1016/j.na.2024.113691","DOIUrl":"10.1016/j.na.2024.113691","url":null,"abstract":"<div><div>We consider vector valued weak solutions <span><math><mrow><mi>u</mi><mo>:</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>N</mi><mo>∈</mo><mi>N</mi></mrow></math></span> of degenerate or singular parabolic systems of type <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>div</mi><mspace></mspace><mi>a</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>=</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>Ω</mi></math></span> denotes an open set in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> for <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>T</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> a finite time. Assuming that the vector field <span><math><mi>a</mi></math></span> is not of Uhlenbeck-type structure, satisfies <span><math><mi>p</mi></math></span>-growth assumptions and <span><math><mrow><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>↦</mo><mi>a</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> is Hölder continuous for every <span><math><mrow><mi>ξ</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mi>n</mi></mrow></msup></mrow></math></span>, we show that the gradient <span><math><mrow><mi>D</mi><mi>u</mi></mrow></math></span> is partially Hölder continuous, provided the vector field degenerates like that of the <span><math><mi>p</mi></math></span>-Laplacian for small gradients.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113691"},"PeriodicalIF":1.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gap results and existence of free boundary CMC surfaces in rotational domains 旋转域中的间隙结果和自由边界 CMC 表面的存在
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-30 DOI: 10.1016/j.na.2024.113681
Allan Freitas , Márcio S. Santos , Joyce S. Sindeaux
{"title":"Gap results and existence of free boundary CMC surfaces in rotational domains","authors":"Allan Freitas ,&nbsp;Márcio S. Santos ,&nbsp;Joyce S. Sindeaux","doi":"10.1016/j.na.2024.113681","DOIUrl":"10.1016/j.na.2024.113681","url":null,"abstract":"<div><div>In this paper, we work with the existence and uniqueness of free boundary constant mean curvature surfaces in rotational domains. These are domains whose boundary is generated by a rotation of a graph. We classify the free boundary CMC surfaces as topological disks or annulus under some conditions on the function that generates the graph and a gap condition on the umbilicity tensor. Also, we construct some examples of free boundary CMC surfaces in the rotational ellipsoid that, in particular, satisfy our gap condition.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113681"},"PeriodicalIF":1.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive and nodal limiting profiles for a semilinear elliptic equation with a shrinking region of attraction 具有收缩吸引力区域的半线性椭圆方程的正极限和节点极限剖面
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-22 DOI: 10.1016/j.na.2024.113680
Mónica Clapp , Víctor Hernández-Santamaría , Alberto Saldaña
{"title":"Positive and nodal limiting profiles for a semilinear elliptic equation with a shrinking region of attraction","authors":"Mónica Clapp ,&nbsp;Víctor Hernández-Santamaría ,&nbsp;Alberto Saldaña","doi":"10.1016/j.na.2024.113680","DOIUrl":"10.1016/j.na.2024.113680","url":null,"abstract":"<div><div>We study the existence and concentration of positive and nodal solutions to a Schrödinger equation in the presence of a shrinking self-focusing core of arbitrary shape. Via a suitable rescaling, the concentration gives rise to a limiting profile that solves a nonautonomous elliptic semilinear equation with a sharp sign change in the nonlinearity. We characterize the (radial or foliated Schwarz) symmetries and the (polynomial) decay of the least-energy positive and nodal limiting profiles.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113680"},"PeriodicalIF":1.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise asymptotics near a generic S1×R3 singularity of mean curvature flow 平均曲率流一般 S1×R3 奇点附近的精确渐近线
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-16 DOI: 10.1016/j.na.2024.113679
Zhou Gang , Shengwen Wang
{"title":"Precise asymptotics near a generic S1×R3 singularity of mean curvature flow","authors":"Zhou Gang ,&nbsp;Shengwen Wang","doi":"10.1016/j.na.2024.113679","DOIUrl":"10.1016/j.na.2024.113679","url":null,"abstract":"<div><div>In the present paper we study a type of generic singularity of mean curvature flow modelled on the bubble-sheet <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and we derive an asymptotic profile for a neighbourhood of singularity.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113679"},"PeriodicalIF":1.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermostatted kinetic theory in measure spaces: Well-posedness 度量空间中的恒温动力学理论:摆平性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-09 DOI: 10.1016/j.na.2024.113666
Carlo Bianca , Nicolas Saintier
{"title":"Thermostatted kinetic theory in measure spaces: Well-posedness","authors":"Carlo Bianca ,&nbsp;Nicolas Saintier","doi":"10.1016/j.na.2024.113666","DOIUrl":"10.1016/j.na.2024.113666","url":null,"abstract":"<div><div>This paper is devoted to the generalization of the thermostatted kinetic theory within the framework of probability measures. Specifically well-posedness of the Cauchy problem related to a thermostatted kinetic equation for measure-valued functions is established. The external force applied to the system is assumed to be Lipschitz, in contrast to previous work where external forces are generally constant. Existence is obtained by employing an Euler-like approximation scheme which is shown to converge assuming the initial condition has moment of order greater than 2. Uniqueness is proved assuming the gain operator is Lipschitz w.r.t a (new) Monge–Kantorovich–Wasserstein distance <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msub></math></span>, intermediate between the classical <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>, <span><math><mrow><mi>r</mi><mo>&lt;</mo><mn>2</mn></mrow></math></span>, distances. The assumptions on the gain operator are quite general covering <span><math><mi>n</mi></math></span>-ary interaction, and apply in particular to the Kac equation.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113666"},"PeriodicalIF":1.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Positive solutions for a Kirchhoff problem of Brezis–Nirenberg type in dimension four 四维布雷齐斯-尼伦堡型基尔霍夫问题的正解
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-09 DOI: 10.1016/j.na.2024.113675
Giovanni Anello, Luca Vilasi
{"title":"Positive solutions for a Kirchhoff problem of Brezis–Nirenberg type in dimension four","authors":"Giovanni Anello,&nbsp;Luca Vilasi","doi":"10.1016/j.na.2024.113675","DOIUrl":"10.1016/j.na.2024.113675","url":null,"abstract":"<div><div>We consider a Kirchhoff problem of Brezis–Nirenberg type in a smooth bounded domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with Dirichlet boundary conditions. Our approach, novel in this framework and based upon approximation arguments, allows us to cope with the interaction between the higher order Kirchhoff term and the critical nonlinearity, typical of the dimension four. We derive several existence results of positive solutions, complementing and improving earlier results in the literature. In particular, we provide explicit bounds of the parameters <span><math><mi>b</mi></math></span> and <span><math><mi>λ</mi></math></span> coupled, respectively, with the higher order Kirchhoff term and the subcritical nonlinearity, for which the existence of solutions occurs.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113675"},"PeriodicalIF":1.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimization of Dirichlet energy of j−degree mappings between annuli 环面间 j 度映射的 Dirichlet 能量最小化
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-09 DOI: 10.1016/j.na.2024.113671
David Kalaj
{"title":"Minimization of Dirichlet energy of j−degree mappings between annuli","authors":"David Kalaj","doi":"10.1016/j.na.2024.113671","DOIUrl":"10.1016/j.na.2024.113671","url":null,"abstract":"<div><div>Let <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> be circular annuli in the complex plane, and consider the Dirichlet energy integral of <span><math><mi>j</mi></math></span>-degree mappings between <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span>. We aim to minimize this energy integral. The minimizer is a <span><math><mi>j</mi></math></span>-degree harmonic mapping between the annuli <span><math><mi>A</mi></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span>, provided it exists. If such a harmonic mapping does not exist, then the minimizer is still a <span><math><mi>j</mi></math></span>-degree mapping which is harmonic in <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊂</mo><mi>A</mi></mrow></math></span>, and it is a squeezing mapping in its complementary annulus <span><math><mrow><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msup><mo>=</mo><mi>A</mi><mo>∖</mo><msup><mrow><mi>A</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span>. This result is an extension of a certain result by Astala et al. (2010).</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113671"},"PeriodicalIF":1.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric affine Poincaré–Sobolev–Wirtinger inequalities on BV(Ω) and characterization of extremizers in one-dimension BV(Ω) 上的非对称仿射 Poincaré-Sobolev-Wirtinger 不等式和一维极值的表征
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-03 DOI: 10.1016/j.na.2024.113673
Raul Fernandes Horta, Marcos Montenegro
{"title":"Asymmetric affine Poincaré–Sobolev–Wirtinger inequalities on BV(Ω) and characterization of extremizers in one-dimension","authors":"Raul Fernandes Horta,&nbsp;Marcos Montenegro","doi":"10.1016/j.na.2024.113673","DOIUrl":"10.1016/j.na.2024.113673","url":null,"abstract":"<div><div>The present work deals with sharp asymmetric Poincaré–Sobolev–Wirtinger inequalities involving the Zhang’s energy on the space of bounded variation functions <span><math><mrow><mi>B</mi><mi>V</mi><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> for any bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> in any dimension <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We establish the existence of a curve of optimal constants along with several of its properties such as attainability, symmetry, monotonicity, positivity, continuity and also asymptotic ones. Moreover, for <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>, our approach allows to exhibit its precise shape and to characterize all extremizers.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113673"},"PeriodicalIF":1.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 当 p 变为 1 时,(p,q)-拉普拉斯问题的恒定符号和节点解的渐近行为
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-10-01 DOI: 10.1016/j.na.2024.113677
Giovany M. Figueiredo , Marcos T.O. Pimenta , Patrick Winkert
{"title":"The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1","authors":"Giovany M. Figueiredo ,&nbsp;Marcos T.O. Pimenta ,&nbsp;Patrick Winkert","doi":"10.1016/j.na.2024.113677","DOIUrl":"10.1016/j.na.2024.113677","url":null,"abstract":"<div><div>In this paper we study the asymptotic behavior of solutions to the <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equation <span><span><span><math><mrow><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span>as <span><math><mrow><mi>p</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msup><mo>≔</mo><mi>N</mi><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mi>f</mi></math></span> is a Carathéodory function that grows superlinearly and subcritically. Based on a Nehari manifold treatment, we are able to prove that the <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Laplace problem given by <span><span><span><math><mrow><mo>−</mo><mo>div</mo><mfenced><mrow><mfrac><mrow><mo>∇</mo><mi>u</mi></mrow><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow></mfrac></mrow></mfenced><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span>has at least two constant sign solutions and one sign-changing solution, whereby the sign-changing solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space <span><math><mrow><mo>BV</mo><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> of all functions of bounded variation. As far as we know this is the first work dealing with <span><math><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-Laplace problems even in the direction of constant sign solutions.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113677"},"PeriodicalIF":1.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142425249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信