A quantitative result for the k-Hessian equation

IF 1.3 2区 数学 Q1 MATHEMATICS
Alba Lia Masiello , Francesco Salerno
{"title":"A quantitative result for the k-Hessian equation","authors":"Alba Lia Masiello ,&nbsp;Francesco Salerno","doi":"10.1016/j.na.2025.113776","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a symmetrization that preserves the mixed volume of the sublevel sets of a convex function, under which, a Pólya–Szegő type inequality holds. We refine this symmetrization to obtain a quantitative improvement of the Pólya–Szegő inequality for the <span><math><mi>k</mi></math></span>-Hessian integral, and, with similar arguments, we show a quantitative inequality for the comparison proved by Tso (1989) for solutions to the <span><math><mi>k</mi></math></span>-Hessian equation.</div><div>As an application of the first result, we prove a quantitative version of the Faber–Krahn and Saint-Venant inequalities for these equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113776"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000318","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a symmetrization that preserves the mixed volume of the sublevel sets of a convex function, under which, a Pólya–Szegő type inequality holds. We refine this symmetrization to obtain a quantitative improvement of the Pólya–Szegő inequality for the k-Hessian integral, and, with similar arguments, we show a quantitative inequality for the comparison proved by Tso (1989) for solutions to the k-Hessian equation.
As an application of the first result, we prove a quantitative version of the Faber–Krahn and Saint-Venant inequalities for these equations.
k-Hessian方程的定量结果
本文研究了一种保留凸函数子水平集混合体积的对称性,在这种对称性下,一个Pólya-Szegő型不等式成立。我们改进了这种对称性,得到了k-Hessian积分Pólya-Szegő不等式的一个定量改进,并且,用类似的论据,我们展示了由Tso(1989)证明的k-Hessian方程解的比较的一个定量不等式。作为第一个结果的应用,我们证明了这些方程的Faber-Krahn不等式和Saint-Venant不等式的一个定量版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信