Y. Chitour , M. Kafnemer , P. Martinez , B. Mebkhout
{"title":"Lp asymptotic stability of 1D damped wave equation with nonlinear damping","authors":"Y. Chitour , M. Kafnemer , P. Martinez , B. Mebkhout","doi":"10.1016/j.na.2025.113753","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the one-dimensional wave equation with localized nonlinear damping and Dirichlet boundary conditions, in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework, with <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>We begin by addressing the well-posedness problem, establishing the existence and uniqueness of weak and strong solutions for <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, under suitable assumptions on the damping function.</div><div>Next, we study the asymptotic behaviour of the associated energy when <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, and we provide decay estimates that appear to be almost optimal compared to similar problems with boundary damping.</div><div>Our work is motivated by earlier studies, particularly, those by Chitour, Marx and Prieur (2020), and Haraux (1978). The proofs combine arguments from Kafnemer, Mebkhout and Chitour (2022) for wave equation in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework with a linear damping, techniques of weighted energy estimates introduced in Martinez (1999), new integral inequalities for <span><math><mrow><mi>p</mi><mo>></mo><mn>2</mn></mrow></math></span>, and convex analysis tools when <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113753"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the one-dimensional wave equation with localized nonlinear damping and Dirichlet boundary conditions, in the framework, with .
We begin by addressing the well-posedness problem, establishing the existence and uniqueness of weak and strong solutions for , under suitable assumptions on the damping function.
Next, we study the asymptotic behaviour of the associated energy when , and we provide decay estimates that appear to be almost optimal compared to similar problems with boundary damping.
Our work is motivated by earlier studies, particularly, those by Chitour, Marx and Prieur (2020), and Haraux (1978). The proofs combine arguments from Kafnemer, Mebkhout and Chitour (2022) for wave equation in the framework with a linear damping, techniques of weighted energy estimates introduced in Martinez (1999), new integral inequalities for , and convex analysis tools when .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.