Cheeger空间上的korevar - schoen p能及其Γ-limits

IF 1.3 2区 数学 Q1 MATHEMATICS
Patricia Alonso Ruiz , Fabrice Baudoin
{"title":"Cheeger空间上的korevar - schoen p能及其Γ-limits","authors":"Patricia Alonso Ruiz ,&nbsp;Fabrice Baudoin","doi":"10.1016/j.na.2025.113779","DOIUrl":null,"url":null,"abstract":"<div><div>The paper studies properties of <span><math><mi>Γ</mi></math></span>-limits of Korevaar–Schoen <span><math><mi>p</mi></math></span>-energies on a Cheeger space. When <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, this kind of limit provides a natural <span><math><mi>p</mi></math></span>-energy form that can be used to define a <span><math><mi>p</mi></math></span>-Laplacian, and whose domain is the Newtonian Sobolev space <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span>. When <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span>, the limit can be interpreted as a total variation functional whose domain is the space of BV functions. When the underlying space is compact, the <span><math><mi>Γ</mi></math></span>-convergence of the <span><math><mi>p</mi></math></span>-energies is improved to Mosco convergence for every <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"256 ","pages":"Article 113779"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Korevaar–Schoen p-energies and their Γ-limits on Cheeger spaces\",\"authors\":\"Patricia Alonso Ruiz ,&nbsp;Fabrice Baudoin\",\"doi\":\"10.1016/j.na.2025.113779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper studies properties of <span><math><mi>Γ</mi></math></span>-limits of Korevaar–Schoen <span><math><mi>p</mi></math></span>-energies on a Cheeger space. When <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>, this kind of limit provides a natural <span><math><mi>p</mi></math></span>-energy form that can be used to define a <span><math><mi>p</mi></math></span>-Laplacian, and whose domain is the Newtonian Sobolev space <span><math><msup><mrow><mi>N</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span>. When <span><math><mrow><mi>p</mi><mo>=</mo><mn>1</mn></mrow></math></span>, the limit can be interpreted as a total variation functional whose domain is the space of BV functions. When the underlying space is compact, the <span><math><mi>Γ</mi></math></span>-convergence of the <span><math><mi>p</mi></math></span>-energies is improved to Mosco convergence for every <span><math><mrow><mi>p</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"256 \",\"pages\":\"Article 113779\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000343\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000343","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究Cheeger空间上korevar - schoen p-能Γ-limits的性质。当p>;1时,这种极限提供了一种自然的p能量形式,可用于定义p-拉普拉斯算子,其定义域为牛顿Sobolev空间N1,p。当p=1时,极限可以解释为一个全变分泛函,其定义域为BV函数空间。当底层空间紧致时,p能量的Γ-convergence对每一个p≥1改进为Mosco收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Korevaar–Schoen p-energies and their Γ-limits on Cheeger spaces
The paper studies properties of Γ-limits of Korevaar–Schoen p-energies on a Cheeger space. When p>1, this kind of limit provides a natural p-energy form that can be used to define a p-Laplacian, and whose domain is the Newtonian Sobolev space N1,p. When p=1, the limit can be interpreted as a total variation functional whose domain is the space of BV functions. When the underlying space is compact, the Γ-convergence of the p-energies is improved to Mosco convergence for every p1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信