一维非线性阻尼波动方程的Lp渐近稳定性

IF 1.3 2区 数学 Q1 MATHEMATICS
Y. Chitour , M. Kafnemer , P. Martinez , B. Mebkhout
{"title":"一维非线性阻尼波动方程的Lp渐近稳定性","authors":"Y. Chitour ,&nbsp;M. Kafnemer ,&nbsp;P. Martinez ,&nbsp;B. Mebkhout","doi":"10.1016/j.na.2025.113753","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the one-dimensional wave equation with localized nonlinear damping and Dirichlet boundary conditions, in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework, with <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>We begin by addressing the well-posedness problem, establishing the existence and uniqueness of weak and strong solutions for <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, under suitable assumptions on the damping function.</div><div>Next, we study the asymptotic behaviour of the associated energy when <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, and we provide decay estimates that appear to be almost optimal compared to similar problems with boundary damping.</div><div>Our work is motivated by earlier studies, particularly, those by Chitour, Marx and Prieur (2020), and Haraux (1978). The proofs combine arguments from Kafnemer, Mebkhout and Chitour (2022) for wave equation in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework with a linear damping, techniques of weighted energy estimates introduced in Martinez (1999), new integral inequalities for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, and convex analysis tools when <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113753"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp asymptotic stability of 1D damped wave equation with nonlinear damping\",\"authors\":\"Y. Chitour ,&nbsp;M. Kafnemer ,&nbsp;P. Martinez ,&nbsp;B. Mebkhout\",\"doi\":\"10.1016/j.na.2025.113753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the one-dimensional wave equation with localized nonlinear damping and Dirichlet boundary conditions, in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework, with <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>We begin by addressing the well-posedness problem, establishing the existence and uniqueness of weak and strong solutions for <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, under suitable assumptions on the damping function.</div><div>Next, we study the asymptotic behaviour of the associated energy when <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, and we provide decay estimates that appear to be almost optimal compared to similar problems with boundary damping.</div><div>Our work is motivated by earlier studies, particularly, those by Chitour, Marx and Prieur (2020), and Haraux (1978). The proofs combine arguments from Kafnemer, Mebkhout and Chitour (2022) for wave equation in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> framework with a linear damping, techniques of weighted energy estimates introduced in Martinez (1999), new integral inequalities for <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, and convex analysis tools when <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"255 \",\"pages\":\"Article 113753\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000082\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在p∈[1,∞]的Lp框架下,研究了具有局部非线性阻尼和Dirichlet边界条件的一维波动方程。我们首先解决适定性问题,在适当的阻尼函数假设下,建立p∈[1,∞)的弱解和强解的存在唯一性。接下来,我们研究了当p∈(1,∞)时相关能量的渐近行为,并且我们提供了与具有边界阻尼的类似问题相比几乎是最优的衰减估计。我们的工作受到早期研究的启发,尤其是奇图尔、马克思和普里埃尔(2020)以及哈罗(1978)的研究。这些证明结合了Kafnemer, Mebkhout和Chitour(2022)对线性阻尼Lp框架下波动方程的论证,Martinez(1999)引入的加权能量估计技术,p>;2的新积分不等式,以及p∈(1,2)时的凸分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lp asymptotic stability of 1D damped wave equation with nonlinear damping
In this paper, we study the one-dimensional wave equation with localized nonlinear damping and Dirichlet boundary conditions, in the Lp framework, with p[1,).
We begin by addressing the well-posedness problem, establishing the existence and uniqueness of weak and strong solutions for p[1,), under suitable assumptions on the damping function.
Next, we study the asymptotic behaviour of the associated energy when p(1,), and we provide decay estimates that appear to be almost optimal compared to similar problems with boundary damping.
Our work is motivated by earlier studies, particularly, those by Chitour, Marx and Prieur (2020), and Haraux (1978). The proofs combine arguments from Kafnemer, Mebkhout and Chitour (2022) for wave equation in the Lp framework with a linear damping, techniques of weighted energy estimates introduced in Martinez (1999), new integral inequalities for p>2, and convex analysis tools when p(1,2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信