Extinction and non-extinction profiles for the sub-critical fast diffusion equation with weighted source

IF 1.3 2区 数学 Q1 MATHEMATICS
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez
{"title":"Extinction and non-extinction profiles for the sub-critical fast diffusion equation with weighted source","authors":"Razvan Gabriel Iagar,&nbsp;Ana Isabel Muñoz,&nbsp;Ariel Sánchez","doi":"10.1016/j.na.2025.113772","DOIUrl":null,"url":null,"abstract":"<div><div>We establish both extinction and non-extinction self-similar profiles for the following fast diffusion equation with a weighted source term <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>Δ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>σ</mi></mrow></msup><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>,</mo></mrow></math></span> posed for <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mspace></mspace><mn>3</mn></mrow></math></span>, in the sub-critical range of the fast diffusion equation <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mi>N</mi></mrow></math></span>. We consider <span><math><mrow><mi>σ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mo>max</mo><mrow><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>m</mi><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mi>σ</mi><mo>)</mo></mrow></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>,</mo><mspace></mspace><msub><mrow><mi>p</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>σ</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>m</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></mrow></math></span> We show that, on the one hand, positive self-similar solutions at any time <span><math><mrow><mi>t</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, in the form <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup><mi>f</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><msup><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mo>∼</mo><mi>C</mi><msup><mrow><mi>ξ</mi></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mi>m</mi></mrow></msup><mo>,</mo><mspace></mspace><mi>α</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> exist, provided <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>m</mi><mo>&lt;</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>=</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>=</mo><mi>m</mi><mrow><mo>(</mo><mi>N</mi><mo>+</mo><mn>2</mn><mi>σ</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo>/</mo><mrow><mo>(</mo><mi>N</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span>. On the other hand, we prove that there exists <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> such that self-similar solutions presenting finite time extinction are established both for <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and for <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>σ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, but with profiles <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> having different spatially decreasing tails as <span><math><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi></mrow></math></span>. We also prove non-existence of self-similar solutions in complementary ranges of exponents to the ones described above or if <span><math><mrow><mi>m</mi><mo>≥</mo><msub><mrow><mi>m</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113772"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000276","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish both extinction and non-extinction self-similar profiles for the following fast diffusion equation with a weighted source term tu=Δum+|x|σup, posed for (x,t)RN×(0,), N3, in the sub-critical range of the fast diffusion equation 0<m<mc=(N2)/N. We consider σ>0 and max{pc(σ),1}<p<pL(σ), where pc(σ)=m(N+σ)N2,pL(σ)=1+σ(1m)2. We show that, on the one hand, positive self-similar solutions at any time t>0, in the form u(x,t)=tαf(|x|tβ),f(ξ)Cξ(N2)/m,α>0,β>0 exist, provided 0<m<ms=(N2)/(N+2) and ps(σ)=m(N+2σ+2)/(N2)<p<pL(σ). On the other hand, we prove that there exists p0(σ)(pc(σ),ps(σ)) such that self-similar solutions presenting finite time extinction are established both for p(p0(σ),ps(σ)) and for p(ps(σ),pL(σ)), but with profiles f(ξ) having different spatially decreasing tails as |x|. We also prove non-existence of self-similar solutions in complementary ranges of exponents to the ones described above or if mmc.
加权源下亚临界快速扩散方程的消光与非消光曲线
在快速扩散方程0<;m<mc=(N−2)/N的亚临界范围内,我们建立了具有加权源项∂tu=Δum+|x|σup的快速扩散方程的消光和非消光自相似轮廓。我们考虑σ在0和马克斯{pc(σ),1}& lt;术中;pL(σ),在pc(σ)= m N (N +σ)−2 pL(σ)= 1 +σ(1−m) 2。我们表明,一方面,正自相似解在任何时候t> 0,以u (x, t) = tαf (x | | tβ),f(ξ)∼Cξ−(N−2)/ m,α祝辞0,β在0存在,提供0 & lt; m<女士= (N−2)/ (N + 2)和ps(σ)= m (N + 2σ+ 2)/ (N−2)& lt;术中;pL(σ)。另一方面,我们证明了p0(σ)∈(pc(σ),ps(σ))的存在,使得p∈(p0(σ),ps(σ))和p∈(ps(σ),pL(σ))均具有有限时间消光的自相似解,但曲线f(ξ)具有不同的空间递减尾,为|x|→∞。我们还证明了在上述指数的互补范围内或当m≥mc时自相似解的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信