Existence results for a borderline case of a class of p-Laplacian problems

IF 1.3 2区 数学 Q1 MATHEMATICS
Anna Maria Candela , Kanishka Perera , Addolorata Salvatore
{"title":"Existence results for a borderline case of a class of p-Laplacian problems","authors":"Anna Maria Candela ,&nbsp;Kanishka Perera ,&nbsp;Addolorata Salvatore","doi":"10.1016/j.na.2025.113762","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this paper is investigating the existence of at least one nontrivial bounded solution of the new asymptotically “linear” problem <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mo>−</mo><mo>div</mo><mfenced><mrow><mfenced><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mi>s</mi></mrow></msup></mrow></mfenced><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>+</mo><mi>s</mi><mspace></mspace><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup></mtd></mtr><mtr><mtd><mspace></mspace><mspace></mspace><mspace></mspace><mo>=</mo><mspace></mspace><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mtext>,</mtext></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>on</mtext><mi>∂</mi><mi>Ω</mi><mtext>,</mtext></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mi>p</mi></mrow></math></span>, both the coefficients <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> and far away from 0, <span><math><mrow><mi>μ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>, and the “perturbation” term <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is a Carathéodory function on <span><math><mrow><mi>Ω</mi><mo>×</mo><mi>R</mi></mrow></math></span> which grows as <span><math><msup><mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><mrow><mn>1</mn><mo>≤</mo><mi>r</mi><mo>&lt;</mo><mi>p</mi><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and is such that <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>≈</mo><mi>ν</mi><msup><mrow><mrow><mo>|</mo><mi>t</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>t</mi></mrow></math></span> as <span><math><mrow><mi>t</mi><mo>→</mo><mn>0</mn></mrow></math></span>.</div><div>By introducing suitable thresholds for the parameters <span><math><mi>ν</mi></math></span> and <span><math><mi>μ</mi></math></span>, which are related to the coefficients <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, respectively <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, under suitable hypotheses on <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, the existence of a nontrivial weak solution is proved if either <span><math><mi>ν</mi></math></span> is large enough with <span><math><mi>μ</mi></math></span> small enough or <span><math><mi>ν</mi></math></span> is small enough with <span><math><mi>μ</mi></math></span> large enough.</div><div>Variational methods are used and in the first case a minimization argument applies while in the second case a suitable Mountain Pass Theorem is used.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"255 ","pages":"Article 113762"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000173","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is investigating the existence of at least one nontrivial bounded solution of the new asymptotically “linear” problem divA0(x)+A(x)|u|ps|u|p2u+sA(x)|u|ps2u|u|p=μ|u|p(s+1)2u+g(x,u)inΩ,u=0onΩ,where Ω is a bounded domain in RN, N2, 1<p<N, s>1/p, both the coefficients A0(x) and A(x) are in L(Ω) and far away from 0, μR, and the “perturbation” term g(x,t) is a Carathéodory function on Ω×R which grows as |t|r1 with 1r<p(s+1) and is such that g(x,t)ν|t|p2t as t0.
By introducing suitable thresholds for the parameters ν and μ, which are related to the coefficients A0(x), respectively A(x), under suitable hypotheses on g(x,t), the existence of a nontrivial weak solution is proved if either ν is large enough with μ small enough or ν is small enough with μ large enough.
Variational methods are used and in the first case a minimization argument applies while in the second case a suitable Mountain Pass Theorem is used.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信