{"title":"De Leeuw representations of functionals on Lipschitz spaces","authors":"Ramón J. Aliaga , Eva Pernecká , Richard J. Smith","doi":"10.1016/j.na.2025.113851","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> be the space of Lipschitz functions on a complete metric space <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span> that vanish at a point <span><math><mrow><mn>0</mn><mo>∈</mo><mi>M</mi></mrow></math></span>. We investigate its dual <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> using the De Leeuw transform, which allows representing each functional on <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> as a (non-unique) measure on <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the space of pairs <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mi>M</mi><mo>×</mo><mi>M</mi></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>≠</mo><mi>y</mi></mrow></math></span>. We distinguish a set of points of <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span> that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> of <span><math><mi>M</mi></math></span>. We define a natural metric <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> on <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> extending <span><math><mi>d</mi></math></span> and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-cyclical monotonicity of their support, extending known results for functionals in <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, the predual of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>. We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span>, and use this to characterise measure-induced and majorisable functionals in <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> as those admitting optimal representations with additional finiteness properties. Finally, we use De Leeuw representations to define a natural L-projection of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> onto <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> under some conditions on <span><math><mi>M</mi></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113851"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001051","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the space of Lipschitz functions on a complete metric space that vanish at a point . We investigate its dual using the De Leeuw transform, which allows representing each functional on as a (non-unique) measure on , where is the space of pairs , . We distinguish a set of points of that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification of . We define a natural metric on extending and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by -cyclical monotonicity of their support, extending known results for functionals in , the predual of . We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to , and use this to characterise measure-induced and majorisable functionals in as those admitting optimal representations with additional finiteness properties. Finally, we use De Leeuw representations to define a natural L-projection of onto under some conditions on .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.